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differences analysis of the largest ever water transfer in United States. Our results show de-
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1 Introduction

In the world’s arid and semi-arid regions, as much as 80% or more of freshwater consumption oc-

curs in agriculture. Growing urban populations and shifting precipitation patterns under a chang-

ing climate provide market incentives to transfer some agricultural water to urban use (Grafton

et al., 2012; Hagerty, 2019). Economic analysis consistently suggests that doing so creates large

gains from trade (Ayres et al., 2021; Rafey, 2023).

Often overlooked, however, is the local impact of water tranfers to the water exporting region.

Historically, opposition to the liberalization of water markets has been strong, focusing on the

potential loss of jobs in the originating region (Mann and Wüstemann, 2008; Holcombe and Sobel,

2001). Permanent transfers of water limit future economic development in the area of origin and

lead to out-migration, although negative outcomes in exporting regions are more limited when

sellers receive substantial benefits and do not sell a large portion of their water (Rosegrant, 1997;

Rosegrant and Ringler, 2000). These pecuniary effects, although not typically viewed as relevant

to efficient resource allocation, may nonetheless trigger political opposition (Weingast et al., 1981).

Politics matter to the efficiency of economic outcomes when they alter the choices govern-

ments make about trade policy (Baldwin, 1989). For instance, the loss of domestic jobs in certain

industries creates a constituency for imposing tariffs and reducing the inflow of goods (Rodrik,

1995). While work on these topics traditionally examines trade between countries, similar policies

can exist sub-nationally when local jurisdictions regulate trade. In the United States, counties and

public water management organizations enact policies to restrict the trade of water to preserve

the use of the resource in local agricultural economies (Hanak and Dyckman, 2003; Edwards and

Libecap, 2015).

Negative environmental outcomes have also emerged as a key issue in the trade in natural

resources (Chichilnisky, 1994; Brander and Taylor, 1998; Copeland and Taylor, 2009). Key case

studies in bison and fisheries have pointed to a direct, deleterious effect on renewable resource

stocks due to export when foreign markets are opened (Taylor, 2011; Eisenbarth, 2022), although

this literature is relatively small (Copeland et al., 2022). For market transfers of water, especially

those that move water from one basin to another, negative externalities arise due to reductions in

water quality, water availability, and in-stream flows (Howe et al., 1990).
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In this study, we examine the pecuniary and environmental externalities of the largest ever

agriculture-to-urban water sale in the United States, the transfer of agricultural irrigation water

from Imperial County to urban use in San Diego County, California. Our interest in pecuniary

effects and complex environmental-economic interactions inform our choice to develop a general

equilibrium water trade model to formalize how ecosystem services and labor markets respond to

transfers. The model is used to generate testable predictions on agricultural employment, skilled-

unskilled wage gap, and ecosystem service outcomes.

We test the model’s predictions using reduced form econometric approaches. Synthetic control

and difference-in-differences analysis show that the water transfer reduced environmental quality

and agricultural jobs, and increased the skilled-unskilled wage gap. Key environmental health

externalities occured due to increased particulate concentrations (PM 10 and PM 2.5) linked to

dust from the desiccation of the region’s large saline lake, the Salton Sea (Heft-Neal et al., 2020;

Jones, 2020; Adhvaryu et al., 2019; Griffin and Kellogg, 2004). Similar dust pollution has been

caused by drying lakes throughout the world, such as the Aral Sea (Glantz, 1999; O’Hara et al.,

2000; Whish-Wilson, 2002), and previously dried lakes, such as those in the Bodélé Depression in

Chad (Wurtsbaugh et al., 2017; Heft-Neal et al., 2020). We perform a benefits transfer exercise that

estimates these costs; for our preferred method using PM 2.5 estimates, they exceed $20 million in

several years. These costs are smaller than transfer revenues, which exceed $100 million in later

years of the agreement, but the majority of the health costs are borne by groups who do not receive

any benefits from the transfer.

In addition to contributing to the literature on water markets and water trade policy, the paper

provides key insight into broader issues related to the market induced distribution of environ-

mental quality across populations (see, for instance, Banzhaf et al. (2019); Hernandez-Cortes and

Meng (2023)). Climate change will require the reallocation of scarce natural resources like water

and smoothly operating markets offer significant efficiency advantages over other means of al-

location (Libecap, 2011; Anderson et al., 2019). Our results suggest that the benefits and costs of

water transfers are not uniformly spread across the population. Groups with political power can

engage in the political process to prevent paying these costs. In contrast, groups without access

to the institutional decision making process may bear externality costs that are ignored in market

design. Understanding environmental and pecuniary externalities when designing environmen-
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tal markets is critical. As we will discuss, the Imperial to San Diego transfer demonstrates how

water markets can be designed to maintain ecosystem services while allowing trade, but that this

is a policy choice that faces opposition when it imposes costs on key constituency groups.

2 Empirical Setting

2.1 The Transfer Agreement

The Colorado River is the largest water source in the southwestern United States. Its waters are

divided between seven states, two countries, and tribal nations (Pulwarty et al., 2005). California’s

allocation of Colorado River water of 4.4 million acre-feet (MAF) was the result of a 1922 agree-

ment that divided 15 MAF of Colorado River water.1 In the early 2000s, California’s ongoing use

was in excess of its allocation, around 5.2 MAF, of which 3.1 MAF was for the Imperial Irrigation

District (IID).

The long-term average annual flow of the Colorado has proven to be less than the 1922 allo-

cation, around 12.4 MAF, meaning IID holds rights to a quarter of the annual flow in an average

year. IID is the largest irrigation district in the country and encompasses a bulk of the land area

in Imperial County, diverting Colorado River water through the All-American Canal just north of

the border with Mexico. The geographic region of study is shown in figure 1. Imperial County is

one of the top agricultural producing counties in the United States, with agricultural production

and processing estimated to contribute $4.5 billion and 24,429 jobs to the local economy (Ortiz and

Dessert, 2017).

In the 1980s and 1990s, California faced pressure to reduce its excess diversions.2 California

and the US federal government pressured IID to transfer water to the San Diego County Water

Authority (SDCWA), allowing overall reductions in Colorado River diversions while maintaining

water supply to what had become the country’s eighth largest city. While initially opposed to

transferring water out of the local agricultural economy, IID reached an agreement in 2003, the

Quantification Settlement Agreement (QSA), transferring up to 200,000 AF per year of water from

1An acre-foot is 326,000 gallons and is enough to supply 1-2 California households with water each year, meaning
4.4 MAF could supply water for up to 22 million people.

2This was primarily due to Arizona’s new development and use of Colorado River water via the Central Arizona
Project.
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Figure 1: Map of Study Region.
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Imperial County to San Diego County for 35-70 years; in 2020, the agreement transferred 190,000

AF of water with payments totaling $129 million. The agreement is commonly described as the

largest agriculture-to-urban water transfer in the history of the United States (Perry, 2013).

To provide water as stipulated in the QSA, IID began various programs to pay farmers to con-

serve water. The amount of water generated under these programs is shown in figure 2. While

this figure represents our best estimates of actual program implementation, these are accounting

estimates, not confirmed water savings (see Wright et al. (2023) for a discussion of how water

accounting estimates differ from on-the-ground reductions in water use). The figure shows that

from 2004 to 2011 the programs conserved around 100,000 AF of water annually, primarily via fal-

lowing (temporarily removing fields from irrigated production), and then increased the amount

of conservation to over 300,000 AF for the period 2014-2018. The mix of programs used to gen-

erate water for transfer also shifted between 2012 and 2014 to system efficiency measures (e.g.,

canal lining projects and canal seepage recovery) and on-farm efficiency measures (e.g., precision

irrigation and tailwater reuse). A key policy related to the fallowing program was mitigation fal-
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Figure 2: Imperial Irrigation District Water Conservation.

Sources: Imperial Irrigation District (IID) (2018, p.69) and USGS Station 10254005: Salton Sea NR Westmorland CA.

lowing, which sent a portion of conserved water directly to the Salton Sea in an attempt to offset

some negative impacts of the fallowing program (described below). Mitigation fallowing water is

thus conserved and remains in the local hydrologic system to provide ecosystem services. There

was no mitigation program for system or on-farm efficiency programs.

IID has continually opposed fallowing programs because they remove agricultural land from

production. Opposition to fallowing programs was strong in IID prior to the agreement and for

this reason the 2003 QSA phased out fallowing over time (Perry, 2002). The inclusion of fallowing

in the initial stage, from IID’s perspective, was to temporarily create water for transfer as other

conservation programs were developed. Fallowing can occur the next irrigation season, but pro-

grams to install new sprinklers or large canal lining projects can take years to implement.3

3Whether the fallowed fields themselves change dust pollution levels depends on time of year and the type of crop
being replaced. While idled land receives no irrigation water and so may be drier, it also receives less disturbance
activity, e.g., tractors (Ayres et al., 2022).
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2.2 Ecosystem Services

Soon after its ratification in October 2003, IID began the fallowing program, reducing agricultural

production and making water available for transfer. Concerns were raised at the time about the

health of the Salton Sea, a large terminal saline lake directly north of the district. The Salton Sea

was created by an accidental diversion of a flood on the Colorado River in 1905. Because the lake

has extremely limited natural inflow, its continued existence is the result of “return flows” from

irrigated agriculture, both surface (tailwater) and underground (drainage water). Around 85% of

the inflow to the Salton Sea is estimated to come from IID return flows, with around one-third

(0.963 MAF) of IID’s total diversions eventually ending up in the lake (Jones et al., 2022).

Under the initial fallowing program, for every three units of land fallowed, water from two

units went to San Diego and one went directly to the Salton Sea (Cohen, 2014). The goal of this

program was for all reductions in water use to come from the agricultural sector, reducing crop

acreage, but not Salton Sea inflows. In contrast to fallowing, conservation via system efficiency

and on-farm efficiency included no controls to retain some portion of transferred water for the

Salton Sea.4 Consensus has emerged that the result of the transfers was a decline in inflows to the

Salton Sea:

“The Salton Sea is shrinking primarily because regional water policy—indirectly—is providing

it a significantly smaller share of water from the Colorado River [...] To generate the water for

transfer and sale, Imperial Irrigation District engaged in several activities to reduce the amount

of water used for irrigation, including the fallowing of agricultural lands in the Imperial Valley

early in the program, to be followed up later by improved irrigation efficiency. Both water-

saving approaches conveyed the known side effect of drastically reducing inflows to the Salton

Sea.” (Fogel et al., 2021, p.22)

Preserving the Salton Sea provides important ecosystems services, especially the prevention

of dust pollution. As flows into the lake decreased, additional dry lakebed (playa) was exposed,

providing a new potential source of local dust pollution. In Imperial County, airborne dust has

been linked via chemical markers to Salton Sea playa (Frie et al., 2017, 2019). Like the Salton Sea,

4Hydro-economic modeling has shown fallowing programs generally result in more inflow to the Salton Sea than
direct lease programs that generate conservation (Levers et al., 2019).
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other terminal lakes have seen changes in agricultural diversions reduce water inflows, leading to

dust pollution, including the Aral Sea, Lake Urmia, Owens Lake, and the Great Salt Lake (Wurts-

baugh et al., 2017). Prior to an investment in dust mitigation of over $2 billion dollars by the City

of Los Angeles, Owens Lake — dried due to the full diversion of Owens River — was the largest

source PM 10 in the United States (Kittle, 2000).

Dust pollution affects human health through the increase in airborne particulate concentra-

tions (Griffin and Kellogg, 2004). For instance, atmospheric PM 2.5 due to dust storms has been

shown to decrease birth weight and increase infant mortality (Jones, 2020; Heft-Neal et al., 2020).

In the Salton Sea, decreases in lake elevation induced changes in PM 2.5 during the period 1998-

2014, which led to serious health issues in the region (Fogel et al., 2021), including increases in

respiratory mortality (Jones and Fleck, 2020). The future impact of this dust is also expected to im-

pose significant health costs (Ayres et al., 2022; Jones et al., 2022). No previous study has causally

linked dust pollution to the IID-San Diego water transfer or estimated the magnitude of the effect.

3 Economic Framework

In this section, we formalize our intuition about the behavior of the economy of Imperial County

and its relationship to water using a general equilibrium model. While externality problems are

often modeled in a partial equilibrium framework, our modelling approach allows us to address

questions about the pecuniary externalities associated with water transfers. We derive predictions

about ecosystem service production, labor outcomes, and the skilled-unskilled wage gap. After

developing a general model, we adapt our approach to institutional specifics, in particular two

policy scenarios implemented in Imperial County: a fallow-transfer program that was in place from

2003 to 2014 and an unrestricted-transfer program that started around 2012 and continues today.

We define the regional economy as three sectors: agriculture (A), manufacturing (M ), and

ecosystem services (E). We assume water availability, W , follows the equation of motion:

dW

dt
≡ Ẇ = σ̄ − ζW −WA −WM −WT (1)

where σ̄ is water inflow; ζW is water outflow (assumed a constant function of the amount of
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water); WA and WM are the amount of water used in the agricultural and manufacturing sectors,

respectively; and WT is the amount of water transferred.

The agricultural sector produces output using land, skilled labor, unskilled labor, and water,

while the manufacturing sector uses skilled labor and water. The ecosystem service sector only

uses unskilled labor and water that remains in the system.5 Production technologies are repre-

sented by the following production functions:

QA = QA(LA, SA, UA,WA) (2)

QM = QM (SM ,WM ) (3)

QE = UEW (4)

where Qj , Sj , Uj , and Wj are production quantity, skilled labor employed, unskilled labor em-

ployed, and water usage, respectively, in sector j = A,E,M , and LA is land usage by agriculture.

All the usual neoclassical assumptions are maintained for production functions in (2) and (3).6 We

assume the exporting region is small relative to the world economy and faces competitive mar-

kets. The full model and results are provided in appendix A; here we provide our results and

general intuition. We first derive results for the exporting region relating water stock (W ) to factor

prices and levels of production.

Proposition 1. Water price (skilled labor wage) is decreasing (increasing) in the steady-state level of water

in the system if agriculture is more water intensive than manufacturing. Land price and the unskilled labor

wage are increasing in the steady-state water level regardless of water intensity rankings.

Land, unskilled labor wages, and skilled labor wages (provided agriculture is more water

intensive than manufacturing) are increasing in W . This proposition, while somewhat intuitive,

immediately demonstrates the pecuniary effect that occurs with a water transfer. While labor is

a substitute for water in production due to our neoclassical assumptions, there are many moving

pieces and the overall reduction in water still reduces labor demand.

5This model can be modified to include capital as another specific factor. However, our objective is to focus on water,
land, and labor markets. This aside, such a modification has no bearing on our analysis and does not add much to the
theoretical foundation that this section provides.

6The specific production function for ecosystem service sector is commonly used for resource sectors (see Schaefer,
1957; Brander and Taylor, 1998).
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By comparing the wages of skilled and unskilled labor under a transfer we arrive at our second

proposition which highlights the impact of water stock on inequality. Such an impact crucially

depends on water elasticity of the skilled wage, denoted by ξS .

Proposition 2. Assuming that agriculture is water intensive, the skilled-unskilled wage gap is decreasing

in the steady state level of water if the skilled wage is water inelastic (i.e., ξS < 1).

Proportional changes in skilled wages as a result of an increase in the steady state level of

water will fall short of those of unskilled wages when ξS < 1. It can be shown that ξS < 1 if

the distributive share of skilled labor in agriculture is sufficiently high. This condition is likely

to be met in our empirical setting. To see why this may to be true, note that skilled laborers in

agriculture must include agricultural engineers, farm managers, and farm owners whose share of

income is likely to be high enough to meet this condition.

Next, we derive a proposition showing the relationship between water in the system and pro-

duction:

Proposition 3. Both agricultural and ecosystem production levels are increasing in the steady state level

of water in the system. While the impact on manufacturing output is generally ambiguous, it is increasing

in steady state level of water if the share of skilled labor employment in agriculture is sufficiently small.

Finally, we can use these earlier propositions to demonstrate that total water use in the lo-

cal economy declines after transfer (this is somewhat convoluted to prove mathematically, see

appendix A).

Proposition 4. A reduction in the steady state level of water in the system reduces the consumptive level

of water.

The remainder of the paper is focused on empirically testing these propositions, which requires

more discussion of the relationship between key institutional details of transfer policy and the

modeling framework. Under the fallow-transfer policy, land is fallowed and conserved water is

exported, less some amount to leave the overall system water unchanged. Under the unrestricted-

transfer policy, the transfer is allowed to decrease the amount of system water. We discuss how

each program works and its testable implications in turn.
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Fallow-Transfer. By design, this program sets the change in water in the system to zero. It fol-

lows from the preceding results that factor prices do not change. Because employment of skilled

and unskilled labor in agriculture falls, and wages do not adjust, unskilled workers who lose their

jobs in agriculture must join the pool of unemployed, while skilled workers move to manufac-

turing.7 All in all, the consequences in factor markets would lead to a decrease in agricultural

output and an increase in manufacturing output. Unemployment in this rural economy also rises.

Since the steady state levels of water and employment in the ecosystem service sector remain un-

changed, the sector output also remains unchanged. Hence, an increase in the water trade under

the fallow-transfer policy will cause:

• a decrease in agricultural output;

• a decrease in the employment of skilled and unskilled workers;

• a decrease in aggregate income.8

Unrestricted-Transfer. Now suppose the water transfer takes place without being tied to the

water consumption level in the regional economy. Because the steady-state level of water declines,

it follows that factor prices for land, and skilled and unskilled labor fall while the factor price

of water increases.9 From these results, we make the following predictions for an unrestricted

transfer:

• an increase in water value;

• a decrease in employment of skilled and unskilled workers;

• an increase in wage inequality;

• a decrease in agricultural and ecosystem service output.

As is typically the case, our empirical setting is not a perfect match for our stylized theoret-

ical predictions. Generally, the first 10 years of the transfer program were designed similarly

to the fallow-transfer regime, while the period thereafter was unrestricted. There are, however,

7We do not differentiate between unemployment or out-migration, which is not explicitly modelled but would serve
a similar purpose mathematically in the model.

8Note that this decrease in income does not include income from the water transfer itself which could offset income
losses.

9This result follows from propositions A1-A3 in appendix A.
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institutional and practical exceptions.10 In what follows, we utilize reduced form econometric ap-

proaches to test if the realized effects of the transfers are consistent with our economic intuition.

We look at two broad categories of effects. First, in regards to pecuniary exernalities, we examine

skilled and unskilled agricultural labor, wage inequality, and agricultural production. While both

policies will lead to reductions in agricultural production and employment, the unrestricted policy

allows factor prices to change, so may be less distortionary. Second, in regards to environmental

externalities, we look for increases in dust pollution. Because the unrestricted transfer does not

provide any protections for the steady-state water level, it is expected later years of the program

will see larger declines in W and greater increases in dust pollution.

4 Empirical Framework

In this section, we describe our empirical strategy to quantify the impact of the QSA on economic

and ecological outcomes of Imperial County—the treatment unit. The plausible identification of a

treatment effect requires the specification of suitable control units that represent a counterfactual

scenario. In our case, all the remaining counties in California—that are not affected by the QSA

and that have not experienced water transfers of similar magnitude due to any other policy or

agreement—serve as potential controls.

4.1 A Synthetic Control

Standard comparative case study methods, such as difference-in-differences, assume that all avail-

able control units are similar to the treatment unit (in terms of observable and unobservable char-

acteristics) in the pre-intervention period, and thus assign an equal weight to all control units in

the analysis. In practice, however, it is unlikely that any given control unit can fully match the

treatment unit in all or most of its attributes in the pre-intervention period.

The synthetic control method adopted in this study avoids the above limitations by relying

upon a data-driven procedure to obtain a suitable counterfactual unit (Abadie and Gardeazabal,

2003; Abadie et al., 2010; Abadie, 2021). A synthetically composed control unit (i.e., synthetic con-

10For example, the mitigation fallowing program was not necessarily concurrent with the transfer fallowing program.
This meant that there were some decreases in steady state water level in the system even during the fallow-transfer
program.
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trol) is a weighted average of available control units (i.e., donor units), with weights determined

based on how closely the attributes of each control unit approximate those of the treatment unit

in the pre-intervention period. After the optimal sets of weights are estimated, a synthetic control

unit is constructed using the weighted average of outcomes of control units. The counterfactual

outcomes are then recovered by taking the weighted average of outcomes of control units for the

post-intervention period, with the treatment effect measured by taking the difference between the

predicted (counterfactual) outcome for the synthetic control and the actual outcome.

Similar to Abadie et al. (2010), let Yit be the outcome of interest for county i, for i = 1, ..., N +1,

in period t, for t = 1, ..., T0+1, ..., T . Suppose the treatment county corresponds to i = 1, while the

remaining N counties constitute the donor pool. Also, assume that the policy/intervention takes

place in period T0 + 1, so that the pre-treatment period covers 1, ..., T0 and the post-treatment

period encompasses T0 + 1, ..., T . Let Y noQSA
it be the outcome of interest for county i at time t if

county i is not exposed to the treatment (i.e., QSA) and let Y QSA
it be the outcome for county i at

time t if county i is exposed to the treatment.

The main requirement placed on a synthetic control unit is that it closely approximates all

relevant attributes of the treatment unit in the pre-treatment period. Consider an N × 1 vector

of weights W = (w2, ..., wN+1)
′, with wi ≥ 0 and w2 + ... + wN+1 = 1. The optimal weights

W∗ = (w∗
2, ..., w

∗
N+1)

′ are determined by minimizing the overall discrepancy in the attributes of

the treatment and a synthetically composed unit (Abadie et al., 2010), given by:

||X1 −X0W|| =
√
(X1 −X0W)′V(X1 −X0W) (5)

where X1 = (Z′
1, Ỹ

K1
i , ..., Ỹ KM

i )′ is a (r + M) × 1 vector of pre-treatment period attributes of

the treatment unit; X0 is a (r + M) × N matrix, with the jth column of (Z′
j , Ỹ

K1
j , ..., Ỹ KM

j )′, of

pre-treatment period attributes of the control units; Zi is an r × 1 vector of observed explana-

tory variables of the outcome variable of interest;11 Ỹ K
i =

∑T0
t=1 ktYit is a linear combination of

pre-treatment outcomes of which there are M corresponding to M sets of K-type weights, i.e.,

K1, ...,KM ;12 and V is a (r + M) × (r + M) symmetric and positive semidefinite matrix that

11See appendix C for the list of covariates considered for each outcome variable.
12The M linear combinations of the outcome variable allow for controlling for unobservable common confounders

that vary over time (Abadie et al., 2010), which improves upon standard difference-in-differences method that can
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weighs the variables in X1 and X0 based on their predictive power on the outcome.

The synthetic control unit is constructed using the optimal weights W∗ = (w∗
2, ..., w

∗
N+1)

′. The

post-intervention values of the synthetically composed outcome can then replace the (unobserv-

able) counterfactual outcome Y noQSA
1t , producing the estimator for the treatment effect:

δ1t = Y QSA
1t −

N+1∑
i=2

w∗
i Yit for t > T0 (6)

To draw inferences on statistical significance of the measured treatment effect, a series of falsifi-

cation tests need to be conducted (Abadie, 2021). Specifically, the treatment status is systematically

assigned to each control unit in the donor pool, which is equivalent to treating control units with

a placebo. The test carries out synthetic control analysis to measure the “treatment” (placebo)

effect.13 The estimated treatment effect for the exposed county (δ1t, for t > T0) is considered statis-

tically significant if it is unusually large in magnitude relative to the “treatment” effects estimated

for the unexposed counties in the post-treatment period. In contrast, if several unexposed coun-

ties can reproduce the effect that is comparable to that of the exposed unit, the treatment effect for

the exposed unit is then deemed to be not statistically significant.14

To visualize this, we prefer the use of gap plots, which show the pre- and post-divergence of

a synthetic control relative to the observed values of the treatment unit. The measured treatment

effect is considered statistically significant if the gap plot for the treatment county lies below the

gap plots for the placebo units (for a negative treatment effect) or above the gap plots for the

placebo units (for the positive treatment effect) for at least one post-intervention year.15 We place

lower importance on RMSPE tests for reasons discussed in appendix E, but include RMSPE tests

in the appendix (see table E2).

control for unobservable confounders that are time-invariant.
13In order to ensure that the synthetic control method produces a plausible synthetic control for each control unit in

the donor pool, we consider control units for which the method produces, at least, as good a fit as that for a treatment
unit in the pre-treatment period. Specifically, in our inferences from falsification tests, we consider control counties with
pre-intervention root mean square prediction errors (RMSPEs) that are less than or equal to twice that of a treatment
unit (Abadie et al., 2010). This helps us refine our inferences as placebo units with poor pre-intervention fit could
increase inference uncertainty in the post-intervention period.

14Nonzero values of the placebo effects can be attributed to broader factors (e.g., economic, regional, environmental,
etc.) that affect both the treatment and control units. Therefore, the falsification test allows one to distinguish the true
treatment effect from other, more common factors.

15That is, the measured treatment effect (gap) for the treatment unit does not need to lie above/below the gap plots
for the placebo units in the entire post-intervention period for statistical significance.
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4.2 Difference-in-Differences

For comparison purposes, we also conduct an event study analysis using a difference-in-differences

(DID) framework. We first estimate a standard panel DID specification given by:

Yit = α (1[Imperial]i × 1[Post-Intervention]t) + Zitβ + µi + λt + εit (7)

where Yit is the outcome variable of interest for county i at time t; 1[Imperial]i is an indicator

that equals 1 if county i represents Imperial County and zero otherwise; 1[Post-Intervention]t is

an indicator variable that equals 1 if year t is in the post-intervention period (i.e., 2004-2018) and

zero otherwise; Zit is a vector of explanatory variables, which is similar to that under synthetic

control; µi and λt are fixed county and year effects, respectively; and εit is the idiosyncratic error

term. The average treatment effect (ATE) is captured by the parameter α. In cases where an

outcome variable of interest is continuous in nature (e.g., harvested acres, labor employment, etc.),

equation (7) is estimated using a standard panel linear model with two-way fixed effects. While,

in cases where an outcome variable is count (e.g., PM 10 days, PM 2.5 days, etc.), we estimate the

above equation using a fixed-effects (FE) Poisson regression under the panel generalized linear

model framework.16

The DID estimation framework relies on several identifying assumptions. First, conditional on

observable factors, the trends of an outcome variable in Imperial County and the control counties

would be similar in the absence of the QSA (treatment). This is broadly known as the parallel

(common) trends assumption. We test the validity of this assumption rigorously by performing

event study analysis (Bartik et al., 2019), as discussed in the following section. We complement this

analysis by also performing DID estimation using solely control counties that receive a nonzero

weight in the synthetic control analysis.17 The main advantage of a synthetic-control-informed DID

is the selection of more suitable control counties (i.e., control counties that closely mimic the treat-

ment county in the pre-treatment period) for the DID analysis. Its disadvantage, however, is a

16For robustness, we have also estimated count outcome variable models using (i) a standard panel linear model with
two-way fixed effects and (ii) a FE negative binomial regression under the panel generalized linear model framework.
The results, which are available upon request, were largely unaltered.

17The list of control counties that receive a nonzero weight from the synthetic control analysis for each outcome
variable is provided in appendix table E1.
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(substantial) reduction in the degrees of freedom, which thus entails exercising caution in inter-

preting the results from this approach.

Second, the water transfer from Imperial County to SDCWA should not affect agricultural and

environmental outcomes in other Californian counties. If, for instance, the QSA depressed agri-

cultural employment in Imperial County and, simultaneously, boosted agricultural employment

(due to, for instance, migration flows) in control counties, then the measured employment effect

could, at best, serve as the upper bound of the true effect. If such agricultural and/or environ-

mental “leakage” effects do exist, they are likely to be most significant in neighboring counties,

particularly Riverside and San Diego (see figure 1). As discussed in section 5, we exclude River-

side County from our analysis due to a water transfer and San Diego County does not receive a

nonzero weight in any synthetic control analysis (see appendix table E1).

Finally, Bertrand et al. (2004) raise concerns about serial correlation, specifically how failure to

account for it can lead to spurious inferences in the DID context, and suggest computing standard

errors that are robust to serial correlation. Serial correlation becomes potentially an important

issue with long time series. Accordingly, we report standard errors clustered at the county level

that are robust to both heteroskedasticity and serial correlation. For FE Poisson regressions, we

report cluster-robust standard errors as recommended by Cameron and Trivedi (2009) to control

for potential overdispersion.

4.3 Event Study

Implementation of an event study analysis provides an internal validity check on the parallel

trends assumption of DID estimation. If the trends of an outcome variable of interest are parallel

between Imperial County and the control counties in the pre-intervention period, then such par-

allel trends were likely to have continued in the post-intervention period, had the policy not been

implemented. Event study analysis also allows for the study of the evolution of the treatment

effect over time.

The event study is constructed by replacing 1[Imperial]i × 1[Post-Intervention]t in (7) with a
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full set of 1[Imperial]i × 1[Y ear]t interaction terms, for t = 1, ..., T0 + 1, ..., T , as in:

Yit =
∑
t

αt (1[Imperial]i × 1[Y ear]t) + Zitβ + µi + λt + εit (8)

where 1[Y eart] is an indicator that equals 1 in year t and zero otherwise. The parameters of

interest are αt, for t = 1, ..., T0 + 1, ..., T , which quantify the difference in an outcome variable of

interest between Imperial County and control counties in year t, relative to the reference year (i.e.,

2003). Depending on the nature of an outcome variable, equation (8) is estimated using either

a standard panel linear model with two-way fixed effects or a FE Poisson regression under the

panel generalized linear model framework. The 95% confidence bounds for the estimates of αt

are obtained using standard errors discussed in section 4.2. Statistical significance is determined

if the confidence interval for any year lies entirely above or below zero.

For each outcome variable, we produce two different event studies. In the first event study,

we include all the available control counties in the estimation. As noted earlier, this assumes that

all control units are similar to the treatment unit in the pre-intervention period, which may not be

necessarily true. In the second event study, we limit the control counties to only those that receive

nonzero weight in the synthetic control analysis. Although this allows for the selection of more

suitable control counties for the analysis, it comes at a cost of reduced sample size.18

5 Data

We build a yearly county-level panel on crop production, labor, and ambient air quality. The study

variables are described in detail in appendix B. Crop production statistics come from the annual

report of USDA’s National Agricultural Statistics Service’s California Field Office and are available

for 1980-2018. From these reports we collect total harvested acreage and alfalfa and hay acreage,

as well as several agriculture-related sales variables: cattle value, alfalfa and hay value, lettuce

value, melon value, and other vegetable values.19

18In the interest of space, we present in the main article event studies using only control counties selected by the
synthetic control analysis, while the event studies using all available control counties in appendix D. The results are
qualitatively similar.

19Lettuce and melons are included because these categories are the most valuable specialty crops in Imperial County.
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Labor employment and earnings variables are available for 1992-2018 from the Quarterly

Workforce Indicators (QWI) of the United States Census Bureau’s Longitudinal Employer-Household

Dynamics (LEHD) survey. This dataset provides quarterly employment statistics data at the

county-NAICS (2- and 3-digit) code level (Abowd and Vilhuber, 2011).20 We create measures of

average employment and earnings for skilled (above high-school education) and unskilled (high

school education and below) employees. For agricultural labor data, we focus on the NAICS sub-

sector 111 (Crop Production).21

Per capita income is obtained from Bureau of Economic Analysis (BEA), as are additional

predictors to control for local economic development including farm proprietor’s income and

employment, wages and salaries, and proprietor’s income and employment. Agricultural labor

ratios—the ratio of male-to-female labor in the agricultural sector, the ratio of white-to-Hispanic

labor in the agricultural sector, and the ratio of low-to-high skill workers in the agricultural

sector—are obtained from the LEHD.

Measures of air quality come from the United States Environmental Protection Agency’s Air

Quality System (AQS). We collect data on air quality index “days” over short-term regulatory

criteria for key pollutants: PM 10, PM 2.5, Ozone and NO2. These represent the number of days the

air quality exceeded the current short-term National Ambient Air Quality Standard. In addition

to days exceeding the national standards, we collect annual mean PM 2.5 and PM 10 AQS data

and supplement it with satellite PM 2.5 data from van Donkelaar et al. (2021). The data period for

each pollutant reflects the data availability.

Our donor (control unit) pool is composed of the remaining counties in California. To avoid

potential confounding effects, we exclude from our donor pool four California counties: Yuba,

Stanislaus, San Joaquin, and Riverside. These counties engaged in sizable water transfers over

the course of the study period.22,23 Depending on the specification as well as outcome variable

20This is the best estimate of employment available at this spatial and industry scale, but the extent to which it is able
to fully capture the important role of undocumented workers in California’s economy, especially for agricultural labor,
is not clear (see, for instance, Borjas, 2017).

21In appendix D (figures D13 and D14 and table D8), we also provide analysis for NAICS sector 11 (Agriculture,
Forestry, Fishing and Hunting). The main results remain unaffected, though the magnitude of the treatment effects are
somewhat elevated.

22For a comprehensive review of water transfers in California, see Hanak and Stryjewski (2012), particularly the
study’s technical appendix.

23While San Diego County, the buyer of Imperial County water, is included in the potential donor pool, it never
receives positive weight. See appendix table E1.
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examined, there is also a loss of a few control counties due to missing observations, as detailed

under table and figure notes. Unlike the difference-in-differences method, the synthetic control

approach requires data to be balanced for the construction of a counterfactual outcome. For sum-

mary statistics of each outcome variable, as well as the list of controls, see appendix C.

6 Results

6.1 Direct Effects

We begin by examining the effect of the water transfer on harvested acres (logged). Figure 3

shows the gap plot from the synthetic control analysis (left) and the event study (right). Event

study diagrams are normalized to be relative to the level in 2003, the first year pre-treatment, with

95% confidence intervals. Harvested acres decline in both figures and for the synthetic control

these declines are larger than those of placebo counties in almost all years post-treatment. The

pattern in the change in harvested acres roughly corresponds to the timing of water conserved by

fallowing shown in figure 2.

Although the event study is only statistically different from zero in one post-treatment year,24

we rely on a DID approach for the average post-treatment effect. In table 1, we provide results

for each outcome variable using (1) the full set of counties and (2) only those counties receiving a

nonzero weight in the synthetic control. The results for harvested acres suggest relatively large,

but noisy, point estimates. Specification (1) has a point estimate of -0.14. This corresponds to a

13% decrease in acreage (with a 95% CI of -2% to -23%).25 At the average pre-treatment acreage

cropped in Imperial County of around 560,000 acres, the 95% confidence interval for the crop

acreage decline is between 11,200 and 129,000 acres. Actual acres fallowed under the various

programs ranged from 6,000 to 53,000 between 2004-2018. The crop reductions come primarily

from reductions in hay/alfalfa acreage post-2004 (see appendix figure D5), which we would expect

as these are lower in value than other crops grown in the region.26

24The event study analysis using all available control counties produces multiple post-treatment years with nonzero
effects (see figure D2).

25We also perform this analysis on harvested acre levels as shown in figures D3 and D4 and table C2.
26The DID analysis on hay/alfalfa acreage uncovers a statistically significant negative effect of the transfer (see ap-

pendix table D4).
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Figure 3: Direct Effects.
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Panel B: Per Capita Income
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Notes: Panel A shows the graphical summary of synthetic control output (left) and the event study plot using counties
that receive nonzero weights in the synthetic control (right) for harvested acres. Full results are shown in appendix
figures D1 and D2 and table D2; summary statistics of the variables included in the analysis are in appendix table C1.
Panel B shows the graphical summary of synthetic control output (left) and the event study plot using counties that
receive nonzero weights in the synthetic control (right) for per capita income. Full results are shown in appendix
figures D6 and D7 and table D5; summary statistics of the variables included in the analysis are in appendix table C4.
All weights for synthetic controls are shown in appendix table E1 and RMSPE tests are shown in appendix table E2. In
the falsification diagram we consider only control counties with pre-intervention RMSPEs that are less than or equal to
twice that of a treatment unit.

To explore the aggregate income effects of the transfer, we look at the change in per capita

income. The synthetic control and event study plots are shown in panel B of figure 3. Changes

in per capita income are limited, with small decreases at the beginning and end of the transfer

period. The DID estimate in table 1 specification (1) suggests a loss in per capita income, but

given the significant pre-trend inherent in including all counties in this regression, we find the

null result in (2) more credible (see appendix figure D7).

There are three types of activities generating water for sale in Imperial County: fallowing,

system efficiency, and on-farm efficiency. The majority of water sale revenue is spent paying

20



Table 1: Difference-in-Differences Estimates for Direct Effects.

Harvested Acres (log) Per Capita Income
(1) (2) (1) (2)

Treatment Effect -0.1403** -0.1840 -5.9623*** 0.0483
(0.0621) (0.1311) (0.8793) (0.3862)

Observations 1,555 195 2,106 195
R2 0.0713 0.2168 0.3728 0.897
F Statistic 11.1777*** 3.9308*** 170.4042** 180.4013***

Notes: Difference-in-differences results for harvested acres and per capita
income using (1) all available control counties and (2) counties that receive
nonzero weights in the synthetic control. Appendix tables D2 and D5 provide
complete estimation results, including the list of control variables included in
the analysis of each outcome variable. Summary statistics of the variables in-
cluded in the analysis are in appendix tables C1 and C4, respectively. All mod-
els control for county and year fixed effects. Harvested acres are measured
in thousands of acres; per capita income is measured in thousands of dollars.
Robust standard errors in parenthesis: *p<0.1; **p<0.05; ***p<0.01.

farmers to implement these programs. In addition, two other payment streams help offset other

costs: environmental mitigation and local entity payments.27 This result suggests that although

agricultural production declines, the payments for the water are returning to Imperial County,

limiting the impacts of these transfers on the local economy. In contrast, prior work in other

settings has suggested that absentee owners receive a substantial fraction of rents from the change

in property rights (Whited, 2010; Sutherland and Edwards, 2022).

6.2 Indirect Effects

6.2.1 Pecuniary Externalities

In the remainder of this section, we expore the indirect costs of the transfer. Our predictions

suggest losses in crop-sector employment after treatment and an increase in the skilled-unskilled

wage gap. These pecuniary externalities occur when wages decline as the agricultural sector be-

comes less productive as a result of reduced water inputs.

Figure 4 provides synthetic control and event study plots for these wage and employment

measures. Employment reductions in both high- and especially low-skill categories are apparent

in the synthetic control plots, but less clearly statistically different from zero in the event study

27Figure D8 shows the total revenue flowing to IID from SDCWA by category of payment. Environmental mitigation
payments go directly to programs to reduce the environmental impacts of the water transfers. Local entity payments
are mitigation funding “to farm service providers whose businesses were affected by fields contracted for fallowing by
IID in support of the water transfer and mitigation programs” (Imperial Irrigation District Summary of Local Entity:
www.iid.com/water/water-conservation/local-entity).
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Figure 4: Imperial County Agricultural Labor.
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Panel B: Low-Skill Labor Employment
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Panel C: Wage Inequality
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Notes: Panel A shows the graphical summary of synthetic control output (left) and the event study plot using counties
that receive nonzero weights in the synthetic control (right) for high-skill labor employment. Full results are shown in
appendix figures D9 and D10 and table D6; summary statistics of the variables included in the analysis are in appendix
table C5. Panel B shows the graphical summary of synthetic control output (left) and the event study plot using counties
that receive nonzero weights in the synthetic control (right) for low-skill labor employment. Full results are shown in
appendix figures D11 and D12 and table D7; summary statistics of the variables included in the analysis are in appendix
table C6. Panel C shows the graphical summary of synthetic control output (left) and the event study plot using counties
that receive nonzero weights in the synthetic control (right) for the skilled-unskilled wage gap. Full results are shown
in appendix figures D17 and D18 and table D10 summary statistics of the variables included in the analysis are in
appendix table C9. Employment measures are for the crop sector (NAICS=111). All weights for synthetic controls are
shown in appendix table E1 and RMSPE tests are shown in appendix table E2. In the falsification diagram we consider
only control counties with pre-intervention RMSPEs that are less than or equal to twice that of a treatment unit.
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Table 2: Difference-in-Differences Estimates for Agricultural Labor.

High-Skill Labor Employment Low-Skill Labor Employment Wage Inequality
(1) (2) (1) (2) (1) (2)

Treatment Effect -320.0928*** -67.9849 -438.2687*** -283.5757 0.0468* 0.1057
(119.5283) (56.4572) (139.5125) (284.9373) (0.0240) (0.0829)

Observations 1,008 135 1,029 135 1,350 135
R2 0.4357 0.9344 0.4268 0.7533 0.0205 0.2514
F Statistic 50.7392*** 91.5996*** 49.9867*** 19.6349*** 3.7791*** 4.6539***

Notes: Difference-in-differences results for high-skill labor employment, low-skill labor employment, and skilled-
unskilled wage gap using (1) all available control counties and (2) counties that receive nonzero weights in the
synthetic control. Appendix tables D6, D7, and D10 provide complete estimation results, including the list of con-
trol variables included in the analysis of each outcome variable. Summary statistics of the variables included in
the analysis are in appendix tables C5, C6, and C9, respectively. All models control for county and year fixed ef-
fects. Employment measures are for the crop sector (NAICS=111). Robust standard errors in parenthesis: *p<0.1;
**p<0.05; ***p<0.01.

plots, which is attributable to the small sample size when using solely relevant control counties.28

In panels A and B, apparent increases in employment after 2014 relative to initial declines may

indicate that the shift into on-farm and system efficiency reduced the labor impacts that occurred

initially under the fallowing program.

The skilled-uskilled wage gap is commonly used as a measure of inequality in trade and devel-

opment literature (e.g., Oladi and Beladi, 2008). Panel C shows an increase in the skilled-unskilled

wage gap, especially the synthetic control plot, which is consistent with water transfers increas-

ing wage inequality. Consistent with our model, water transfers reduce agricultural sector em-

ployment, especially for low-skill workers, and depress low-skill wages. Both impacts, although

typically excluded from welfare calculations, are likely to disproportionately affect a poor and

vulnerable subset of the agricultural labor force. Results of the difference-in-differences analy-

ses in table 2 confirm the sign and, for the analyses including all control counties, the statistical

significance of the graphical outcomes. While both specifications (2) are negative, they are not

statistically different from zero. Again, this is partly attributable to a significant reduction in the

sample size in using only counties that receive nonzero weights in the synthetic control approach.

28The event studies using all available control counties show clear, statistically significant post-intervention dips in
both high- and low-skill employment in both crop (see appendix figures D10 and D12) and ag (see appendix figures D14
and D16) sectors, with plausible pre-trends.
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Table 3: Difference-in-Differences Estimates for Dust-Related Air Quality.

PM 10 Days PM 2.5 Days
(1) (2) (1) (2)

Treatment Effect 0.6971*** 0.9463 1.0241*** 0.9757***
(0.0000) (2.3664) (0.0000) (0.0002)

Observations 1,876 264 1,069 105
Log-likelihood -10,807.38 -3,095.025 -16,410.72 -900.2285

Notes: Difference-in-differences results for PM 10 and PM 2.5 Days us-
ing (1) all available control counties and (2) counties that receive nonzero
weights in the synthetic control. Appendix tables D11 and D12 pro-
vide complete estimation results, including the list of control variables
included in the analysis of each outcome variable. Summary statistics
of the variables included in the analysis are in appendix tables C10 and
C11. All models control for county and year fixed effects. Robust stan-
dard errors in parenthesis: *p<0.1; **p<0.05; ***p<0.01.

6.2.2 Environmental Externalities

To understand the change in air pollution in Imperial County, we examine dust-related air pol-

lutants PM 10 and PM 2.5. As shown in figure 2, accelerating decreases in Salton Sea elevation

occurred starting in 2013 with implementation of on-farm and system efficiency programs. Be-

tween 2012 and 2018, exposed lakebed area went from aroun 8,000 acres to 20,911 acres (Forma-

tion Environmental, LLC, 2016, 2018). Figure 5 shows one key measure of air pollution, days per

year a pollutant is above EPA standards, for PM 2.5 and PM 10. This measure increases dramati-

cally around this same time period when more playa is exposed. The PM 10 gap plot shows that

Imperial County has a larger divergence in 2014, and every subsequent year, relative to all other

placebo counties. The PM 2.5 gap plot indicates that from 2014 on, Imperial County is among the

counties with the largest positive divergence, although it is never the largest.

Difference-in-differences estimates from fixed-effects Poisson regressions are presented in ta-

ble 3. Treatment effect coefficient estimates vary from 0.7 to 1.0 for PM 10 and are about 1.0 for

PM 2.5, implying 2.01 to 2.72 times more days with PM 10 above EPA limits and about 2.72 times

as many days above PM 2.5 limits. Given the changes in the timing of air pollution as a result of

policy changes, the average treatment effect estimates of these regressions are lower than those

from later years displayed in figure 5.29

29We also perform analysis using EPA’s annual mean PM 10 and PM 2.5 concentrations (µg/m3). See synthetic control
plots in appendix figures D27 and D29, event studies in appendix figures D28 and D30, and difference-in-differences
results in appendix tables D15 and D16. For PM 2.5, we also examine satellite-based measures from van Donkelaar
et al. (2021) on the county mean and max annual values. See synthetic control plots in appendix figures D31 and D33,
event studies in appendix figures D32 and D34, and difference-in-differences results in appendix tables D17 and D18.

24



Figure 5: Imperial County Dust-Related Air Quality.
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Panel B: PM 2.5 Days
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Notes: Panel A shows the graphical summary of synthetic control output (left) and the event study plot using coun-
ties that receive nonzero weights in the synthetic control (right) for PM 10 Days. Full results are shown in appendix
figures D19 and D20 and table D11; summary statistics of the variables included in the analysis are in table C10. Panel
B shows the graphical summary of synthetic control output (left) and the event study plot using counties that receive
nonzero weights in the synthetic control (right) for PM 2.5 Days. Full results are shown in appendix figures D21 and
D22 and table D12; summary statistics of the variables included in the analysis are in appendix table C11. All weights
for synthetic controls are shown in appendix table E1 and RMSPE tests are shown in appendix table E2. In the falsifica-
tion diagram we consider only control counties with pre-intervention RMSPEs that are less than or equal to twice that
of a treatment unit. Y-axis scales differ within panels.

To test the robustness of these results, we compare the dust-related pollutants to air pollutants

attributable to other factors. Because our causal story is that the water transfer exposed additional

lakebed playa, pollutants like ozone and NO2 which are generated primarily through combustion,

would not increase. The results in table 4 suggest that the placebo pollutants do not increase like

PM 10 and PM 2.5. In fact, ozone and NO2 days appear to decline. This provides evidence that the

observed increases in PM 2.5 and PM 10 are not attributable to increased fossil fuel combustion,

for instance as the result of increased economic activity.

Figure 6 shows that for non-dust pollutant days, synthetic control and event study plots see

25



Table 4: Difference-in-Differences Estimates for Air Quality Placebo Measures.

Ozone Days NO2 Days
(1) (2) (1) (2)

Treatment Effect -0.1497*** 0.1023*** -0.1027*** -0.1221
(0.0000) (0.0047) (0.0000) (0.1345)

Observations 1,276 150 1,276 100
Log-likelihood -12,753.68 -3,048.978 -8,639.586 -612.4266

Notes: Difference-in-differences results for Ozone and NO2 Days using
(1) all available control counties and (2) counties that receive nonzero
weights in the synthetic control. Appendix tables D13 and D14 pro-
vide complete estimation results, including the list of control variables
included in the analysis of each outcome variable. Summary statistics
of the variables included in the analysis are in appendix tables C12 and
C13. All models control for county and year fixed effects. Robust stan-
dard errors in parenthesis: *p<0.1; **p<0.05; ***p<0.01.

large declines at the same time PM 2.5 and PM 10 increase. NO2 is a precursor to ozone forma-

tion, which occurs through the combination of nitrogen oxides and volatile organic compounds

(VOCs). The amount of ozone formed should follow that of the nitrogen oxides when they are

the limiting reactant. Under the Clean Air Act, “The EPA designated Imperial County, California,

as nonattainment for the 2008 ozone standards on May 21, 2012 (EPA, 2019). Following this des-

ignation, Imperial County made progress reducing ozone precursors, both nitrogen oxides and

VOCs. From 2011 to 2017, total nitrogen oxide emissions decreased from 23.0 to 15.2 tons per day,

primarily from reductions in on-road and off-road vehicle emissions (VOCs dropped from 19.5 to

13.5 tpd) (EPA, 2019, Table 5). These results suggest that absent the increase in dust pollution, PM

10 and PM 2.5 levels would likely have fallen during this time period.

6.2.3 Health Costs

Exposure to particulate pollution causes a variety of adverse health effects, especially related to

the heart and lungs. PM 10 are inhalable particles with diameters 10 micrometers and smaller;

PM 2.5 are inhalable particles with diameters 2.5 micrometers or less. PM 2.5 particles can make

their way deep into the lungs and even bloodstream, and pose the greatest risk to health. Because

particles are defined according to their size, PM 10 measurements are inclusive of PM 2.5.

To estimate the health costs of increased particulate pollution, we perform a benefit transfer

exercise using damage estimates from additional concentrations of PM 2.5 on elderly mortality

from Deryugina et al. (2019) and infant mortality from Chay and Greenstone (2003). Although
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Figure 6: Imperial County Air Quality Placebo Measures.
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Panel B: NO2 Days
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Notes: Panel A shows the graphical summary of synthetic control output (left) and the event study plot using counties
that receive nonzero weights in the synthetic control (right) for Ozone Days. Full results are shown in appendix fig-
ures D23 and D24 and table D13; summary statistics of the variables included in the analysis are in appendix table C12.
Panel B shows the graphical summary of synthetic control output (left) and the event study plot using counties that
receive nonzero weights in the synthetic control (right) for NO2 Days. Full results are shown in appendix figures D25
and D26 and table D14; summary statistics of the variables included in the analysis are in appendix table C13. All
weights for synthetic controls are shown in appendix table E1 and RMSPE tests are shown in appendix table E2. In
the falsification diagram we consider only control counties with pre-intervention RMSPEs that are less than or equal to
twice that of a treatment unit. Y-axis scales differ within panels.

PM 2.5 is the particulate pollutant of primary concern, monitoring data for PM 2.5 in the pre-

period is limited to five years. In a separate analysis, we estimate health costs based instead on

additional PM 10 concentrations, for which monitoring data are available starting much earlier,

using relationships from Jones et al. (2022).30

Health estimates are based on changes in the annual mean concentration of particulate matter.

Post-treatment annual mean PM 2.5 levels increase 1.6 to 1.9µg/m3 across the synthetic control

30Details of our health cost calculations are provided in appendix F.
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and DID estimates, leading annually to 0.71 to 0.82 additional infant deaths, 36-42 lost life years

among the elderly, and 32-38 additional ER visits. The total estimated cost of the PM 2.5 increase

is between $6.4 and $7.5 million annually. Turning to the PM 10 approach, the synthetic control

estimated annual mean increase of 15.1µg/m3 is estimated to increase cardiovascular deaths by

10.6 annually and respiratory ER admissions by 25 visits.31 Calculation details are documented in

appendix table F1.

Our synthetic control approach also allows us to examine health cost estimates annually using

the annual gap between the synthetic control and observed particulate levels. We use a VSL range

of $1.8-4.9 million to provide an upper and lower bound on this cost as shown in figure 7. The

costs using the estimated annual increase in PM 2.5 are consistently lower than those modeled

using PM 10. The figure also shows the total annual sale revenue of the water transfer. PM 10

estimates of health costs are of the same magnitude as the sale value. PM 2.5 estimates are less but

still exceed $20 million annually in several years. These costs suggest large externalities associated

with the transfer. Because the approach for estimating PM 2.5 costs is more robust, and because

PM 2.5 is the primary driver of particle health costs, these cost estimates are preferred.

7 Conclusion

This paper investigates the causal effect of the largest agriculture-to-urban water transfer in US

history. A general-equilibrium representation of a regional economy with an ecosystem service

sector is constructed to formalize economic intuition about the response of labor markets and

ecosystem service provision in the exporting region. The model demonstrates that although water

and labor are substitutes, the overall effect of trade is a decrease in production and job losses in

the water exporting region. When water transfers lead to the intensification of consumptive water

use, the ecosystems services sector is degraded. To test empirically whether these effects occur,

we implement synthetic control, difference-in-differences, and event study analyses. Our results

suggest an immediate loss of harvested acres, decreases in agricultural-sector employment, and

increases in the skilled-unskilled wage gap. We also demonstrate a significant increase in dust-

31The DID estimates for PM 10 vary widely depending on what counterfactual counties are used, from a 7.5µg/m3

decrease for the full sample to a 39.8µg/m3 increase for the counterfactual sample using only counties with weights in
the synthetic control.
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Figure 7: Health Costs and Sales Revenue.

related air pollution, especially as more lake bed playa is exposed by transfers without mitigation

mandates.

The distribution of the benefits from trade plays a key role in policy choice. While preserv-

ing the ecosystem services sector via a fallowing program with mitigation water for the Salton

Sea provided broad public good benefits in terms of limiting dust-related air pollution, when this

policy ended, a narrow set of benefits accrued to concentrated economic interests, especially farm-

related businesses and agricultural labor. Thus, both the magnitude and distribution of these ben-

efits are important factors to understanding the endogenous choice of water trade policy and its

outcomes. Levers et al. (2019) suggest the low-cost approach to solving the problems of the Salton

Sea is the purchase of additional water rights for environmental flows to preserve ecosystem ser-

vice benefits. This water would likely come out of agriculture, increasing pecuniary externalities

and political opposition.

This same political opposition stalled the original transfer, finally undertaken in the QSA, for

over 20 years (Edwards and Libecap, 2015). Growing concerns about high rates of asthma around

the Salton Sea and its continued decline suggest dust pollution from the desiccated lakebed will

need to be addressed going forward via investment in mitigation or additional dedicated water
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inflows. Given the limited marginal value of water in irrigated agricultural production relative to

urban consumption, addiitonal water transfers out of IID are likely to be initiated (Grafton et al.,

2012). The challenge facing these and other water transfers is that environmental and pecuniary

costs fall on parties who do not receive the gains from trade. Thus, large benefits accrue to those

involved in the transfer while costs fall on those whose local economy is left in the dust.

References

Abadie, A. (2021). Using Synthetic Controls: Feasibility, Data Requirements, and Methodological
Aspects. Journal of Economic Literature 59(2), 391–425.

Abadie, A., A. Diamond, and J. Hainmueller (2010). Synthetic Control Methods for Compara-
tive Case Studies: Estimating the Effect of California’s Tobacco Control Program. Journal of the
American Statistical Association 105(490), 493–505.

Abadie, A. and J. Gardeazabal (2003). The Economic Costs of Conflict: A Case Study of the Basque
Country. American Economic Review 93(1), 113–132.

Abowd, J. M. and L. Vilhuber (2011). National Estimates of Gross Employment and Job Flows
from the Quarterly Workforce Indicators with Demographic and Industry Detail. Journal of
Econometrics 161(1), 82–99.

Adhvaryu, A., P. Bharadwaj, J. Fenske, A. Nyshadham, and R. Stanley (2019). Dust and Death:
Evidence from the West African Harmattan. Technical report, National Bureau of Economic
Research.

Agarwal, N., C. Banternghansa, and L. T. Bui (2010). Toxic Exposure in America: Estimating Fetal
and Infant Health Outcomes from 14 Years of TRI Reporting. Journal of Health Economics 29(4),
557–574.

Aldy, J. E. and W. K. Viscusi (2007). Age Differences in the Value of Statistical Life: Revealed
Preference Evidence. Review of Environmental Economics and Policy 1(2), 241–260.

Anderson, S. E., T. L. Anderson, A. C. Hill, M. E. Kahn, H. Kunreuther, G. D. Libecap,
H. Mantripragada, P. Mérel, A. J. Plantinga, and V. Kerry Smith (2019). The Critical Role of
Markets in Climate Change Adaptation. Climate Change Economics 10(01), 1950003.

Ayres, A., T. Adams, J. Carron, M. Cohen, and A. Saracino (2022). Potential Impacts of Reduced
Inflows to the Salton Sea: Forecasting Non-market Damages. JAWRA Journal of the American
Water Resources Association.

Ayres, A., J. Kwon, and J. Collins (2022). Land Transitions and Dust in the San Joaquin Valley.
Technical report, Public Policy Institute of California.

Ayres, A. B., K. C. Meng, and A. J. Plantinga (2021). Do Environmental Markets Improve on Open
Access? Evidence from California Groundwater Rights. Journal of Political Economy 129(10),
2817–2860.

30



Baldwin, R. E. (1989). The Political Economy of Trade Policy. Journal of Economic Perspectives 3(4),
119–135.

Banzhaf, S., L. Ma, and C. Timmins (2019). Environmental Justice: The Economics of Race, Place,
and Pollution. Journal of Economic Perspectives 33(1), 185–208.

Bartik, A. W., J. Currie, M. Greenstone, and C. R. Knittel (2019). The Local Economic and Welfare
Consequences of Hydraulic Fracturing. American Economic Journal: Applied Economics 11(4), 105–
55.

Bertrand, M., E. Duflo, and S. Mullainathan (2004). How Much Should We Trust Difference-in-
Differences Estimates? Quarterly Journal of Economics 119(1), 249–275.

Borjas, G. J. (2017). The Labor Supply of Undocumented Immigrants. Labour Economics 46, 1–13.

Brander, J. A. and M. S. Taylor (1998). Open Access Renewable Resources: Trade and Trade Policy
in a Two-Country Model. Journal of International Economics 44(2), 181–209.

Cameron, A. C. and P. K. Trivedi (2009). Microeconometrics: Methods and Applications. New York,
NY: Cambridge University Press.

Chay, K. Y. and M. Greenstone (2003). The Impact of Air Pollution on Infant Mortality: Evidence
from Geographic Variation in Pollution Shocks Induced by a Recession. Quarterly Journal of
Economics 118(3), 1121–1167.

Chichilnisky, G. (1994). North-South Trade and the Global Environment. American Economic Re-
view 84(4), 851–874.

Christensen, K. L. Y., R. C. Holman, C. A. Steiner, J. J. Sejvar, B. J. Stoll, and L. B. Schonberger
(2009). Infectious Disease Hospitalizations in the United States. Clinical Infectious Diseases 49(7),
1025–1035.

Cohen, M. J. (2014). Hazard’s Toll: The Costs of Inaction at the Salton Sea. Pacific Institute.

Copeland, B. R., J. S. Shapiro, and M. S. Taylor (2022). Globalization and the Environment. In
G. Gopinath, E. Helpman, and K. Rogoff (Eds.), Handbook of International Economics, Volume 4,
Chapter 2, pp. 61–146. Elsevier.

Copeland, B. R. and M. S. Taylor (2009). Trade, Tragedy, and the Commons. American Economic
Review 99(3), 725–749.

Cutler, D. M. (2005). Your Money or Your Life: Strong Medicine for America’s Health Care System.
Oxford University Press.

Deryugina, T., G. Heutel, N. H. Miller, D. Molitor, and J. Reif (2019). The Mortality and Medi-
cal Costs of Air Pollution: Evidence from Changes in Wind Direction. American Economic Re-
view 109(12), 4178–4219.

Edwards, E. C. and G. D. Libecap (2015). Water Institutions and the Law of One Price. In
R. Halvorsen and D. F. Layton (Eds.), Handbook on the Economics of Natural Resources, Chapter 16,
pp. 442–473. Cheltenham, UK: Edward Elgar.

Eisenbarth, S. (2022). Do Exports of Renewable Resources Lead to Resource Depletion? Evidence
from Fisheries. Journal of Environmental Economics and Management 112, 102603.

31



EPA (2019). Clean Air Plans; 2008 8-Hour Ozone Nonattainment Area Requirements; Determi-
nation of Attainment by the Attainment Date; Imperial County, California. Technical Report
2019-23134.

Fogel, M., H. Ajami, E. Aronson, R. Bahreini, W. Elders, D. Jenerette, D. Lo, T. Lyons, M. McKibben,
W. Porter, A. Raju, K. Schwabe, C. Hung, and J. Nye (2021). Crisis at the Salton Sea: The Vital
Role of Science. The EDGE Institute, University of California Riverside, Salton Sea Task Force.

Formation Environmental, LLC (2016). Salton Sea Emissions Monitoring Program: 2016/2017
Annual Report and PM10 Emissions Estimates. Annual report prepared for Imperial Irrigation Dis-
trict. Available at: https://saltonseaprogram.com/aqm/docs/2016_2017_Annual_
Report_and_Emissions_Estimates_Final.pdf.

Formation Environmental, LLC (2018). Salton Sea Emissions Monitoring Program: 2018/2019
Annual Report and PM10 Emissions Estimates. Annual report prepared for Imperial Irrigation Dis-
trict. Available at: https://saltonseaprogram.com/aqm/docs/2018_2019_Annual_
Report_and_Emissions_Estimates_w_attachments.pdf.

Frie, A. L., J. H. Dingle, S. C. Ying, and R. Bahreini (2017). The Effect of a Receding Saline Lake
(the Salton Sea) on Airborne Particulate Matter Composition. Environmental Science & Technol-
ogy 51(15), 8283–8292.

Frie, A. L., A. C. Garrison, M. V. Schaefer, S. M. Bates, J. Botthoff, M. Maltz, S. C. Ying, T. Lyons,
M. F. Allen, E. Aronson, et al. (2019). Dust Sources in the Salton Sea Basin: A Clear Case of an
Anthropogenically Impacted Dust Budget. Environmental Science & Technology 53(16), 9378–9388.

Glantz, M. (1999). Creeping Environmental Problems and Sustainable Development in the Aral Sea Basin.
Cambridge: Cambridge University Press.

Grafton, R. Q., G. D. Libecap, E. C. Edwards, R. J. O’Brien, and C. Landry (2012). Comparative
Assessment of Water Markets: Insights from the Murray–Darling Basin of Australia and the
Western USA. Water Policy 14(2), 175–193.

Griffin, D. W. and C. A. Kellogg (2004). Dust Storms and Their Impact on Ocean and Human
Health: Dust in Earth’s Atmosphere. EcoHealth 1(3), 284–295.

Hagerty, N. (2019). Liquid Constrained in California: Estimating the Potential Gains from Water
Markets. mimeo.

Hanak, E. and C. Dyckman (2003). Counties Wresting Control: Local Responses to California’s
Statewide Water Market. University of Denver Water Law Review 6(2), 490–518.

Hanak, E. and E. Stryjewski (2012). California’s Water Market, By the Numbers: Update 2012.
Public Policy Institute of California, San Francisco.

Heft-Neal, S., J. Burney, E. Bendavid, K. K. Voss, and M. Burke (2020). Dust Pollution from the
Sahara and African Infant Mortality. Nature Sustainability 3(10), 863–871.

Hernandez-Cortes, D. and K. C. Meng (2023). Do Environmental Markets Cause Environmental
Injustice? Evidence from California’s Carbon Market. Journal of Public Economics 217, 104786.

Holcombe, R. G. and R. S. Sobel (2001). Public Policy Toward Pecuniary Externalities. Public
Finance Review 29(4), 304–325.

32

https://saltonseaprogram.com/aqm/docs/2016_2017_Annual_Report_and_Emissions_Estimates_Final.pdf
https://saltonseaprogram.com/aqm/docs/2016_2017_Annual_Report_and_Emissions_Estimates_Final.pdf
https://saltonseaprogram.com/aqm/docs/2018_2019_Annual_Report_and_Emissions_Estimates_w_attachments.pdf
https://saltonseaprogram.com/aqm/docs/2018_2019_Annual_Report_and_Emissions_Estimates_w_attachments.pdf


Howe, C. W., J. K. Lazo, and K. R. Weber (1990). The Economic Impacts of Agriculture-to-Urban
Water Transfers on the Area of Origin: A Case Study of the Arkansas River Valley in Colorado.
American Journal of Agricultural Economics 72(5), 1200–1204.

Imperial Irrigation District (IID) (2018). Water & QSA Implementation Report: 2017-2018. Avail-
able at: https://www.iid.com/home/showdocument?id=18426.

Jones, B., J. Wang, and J. Fleck (2022). Sending Agricultural Water to The Salton Sea to Improve
Public Health? An Integrated Hydro-Agri-Health Economic Analysis. An Integrated Hydro-Agri-
Health Economic Analysis (June 23, 2022).

Jones, B. A. (2020). After the Dust Settles: The Infant Health Impacts of Dust Storms. Journal of the
Association of Environmental and Resource Economists 7(6), 1005–1032.

Jones, B. A. and J. Fleck (2020). Shrinking Lakes, Air Pollution, and Human Health: Evidence from
California’s Salton Sea. Science of the Total Environment 712, 136490.

Kittle, S. (2000). Survey of Reported Health Effects of Owens Lake Particulate Matter. Great Basin
Unified Air Pollution Control District, Bishop, CA.

Levers, L. R., T. H. Skaggs, and K. A. Schwabe (2019). Buying Water for the Environment: A
Hydro-Economic Analysis of Salton Sea Inflows. Agricultural Water Management 213, 554–567.

Libecap, G. D. (2011). Institutional Path Dependence in Climate Adaptation: Coman’s “Some
Unsettled Problems of Irrigation”. American Economic Review 101(1), 64–80.

Mann, S. and H. Wüstemann (2008). Multifunctionality and a New Focus on Externalities. Journal
of Socio-Economics 37(1), 293–307.

O’Hara, S. L., G. F. Wiggs, B. Mamedov, G. Davidson, and R. B. Hubbard (2000). Exposure to
Airborne Dust Contaminated with Pesticide in the Aral Sea Region. The Lancet 355(9204), 627–
628.

Oladi, R. and H. Beladi (2008). Non-traded Goods, Technical Progress and Wages. Open Economies
Review 19(4), 507–515.

Ortiz, C. and J. Dessert (2017). 2016 Imperial County Agricultural Crop and Livestock Report.
Agricultural Commissioner, Sealer of Weights and Measures, County of Imperial, Available at:
https://agcom.imperialcounty.org/crop-reports/.

Ostro, B. D., R. Broadwin, and M. J. Lipsett (2000). Coarse and Fine Particles and Daily Mortality in
the Coachella Valley, California: A Follow-up Study. Journal of Exposure Science & Environmental
Epidemiology 10(5), 412–419.

Perry, T. (2002). Farmers Oppose Call to Idle Land. Los Angeles Times.

Perry, T. (2013). Judge Affirms Deal to Bring Imperial Valley Water to San Diego County. Los
Angeles Times.

Pulwarty, R. S., K. L. Jacobs, and R. M. Dole (2005). The Hardest Working River: Drought and
Critical Water Problems in the Colorado River Basin. In D. A. Wilhite (Ed.), Drought and Water
Crises: Science, Technology, and Management Issue, Chapter 10, pp. 249–285. Boca Raton, FL: CRC
Press.

33

https://www.iid.com/home/showdocument?id=18426
https://agcom.imperialcounty.org/crop-reports/


Rafey, W. (2023). Droughts, Deluges, and (River) Diversions: Valuing Market-based Water Reallo-
cation. American Economic Review 113(2), 430–471.

Rodrik, D. (1995). Political Economy of Trade Policy. In G. M. Grossman and K. Rogof (Eds.),
Handbook of International Economics, Volume 3, Chapter 28, pp. 1457–1494. Elsevier.

Rosegrant, M. W. (1997). Water Resources in the Twenty-First Century: Challenges and Implica-
tions for Action. Food, Agriculture, and the Environment Discussion Paper 20, IFPRI, Washing-
ton, D.C.

Rosegrant, M. W. and C. Ringler (2000). Impact on Food Security and Rural Development of
Transferring Water out of Agriculture. Water Policy 1(6), 567–586.

Schaefer, M. B. (1957). Some Considerations of Population Dynamics and Economics in Rela-
tion to the Management of the Commercial Marine Fisheries. Journal of the Fisheries Board of
Canada 14(5), 669–681.

Schwartz, J. (1996). Air Pollution and Hospital Admissions for Respiratory Disease. Epidemiol-
ogy 7(1), 20–28.

Sutherland, S. A. and E. C. Edwards (2022). The Impact of Property Rights to Fish on Remote
Communities in Alaska. Land Economics 98(2), 239–253.

Taylor, M. S. (2011). Buffalo Hunt: International Trade and the Virtual Extinction of the North
American Bison. American Economic Review 101(7), 3162–3195.

van Donkelaar, A., M. S. Hammer, L. Bindle, M. Brauer, J. R. Brook, M. J. Garay, N. C. Hsu, O. V.
Kalashnikova, R. A. Kahn, C. Lee, et al. (2021). Monthly Global Estimates of Fine Particulate
Matter and Their Uncertainty. Environmental Science & Technology 55(22), 15287–15300.

Weingast, B. R., K. A. Shepsle, and C. Johnsen (1981). The Political Economy of Benefits and Costs:
A Neoclassical Approach to Distributive Politics. Journal of Political Economy 89(4), 642–664.

Whish-Wilson, P. (2002). The Aral Sea Environmental Health Crisis. Journal of Rural and Remote
Environmental Health 1(2), 29–34.

Whited, M. (2010). Economic Impacts of Irrigation Water Transfers on Uvalde County, Texas.
Journal of Regional Analysis and Policy 40(1100-2016-89585).

Wright, K., A. Ayres, and B. Leonard (2023). Rotational Fallowing Falls Short of Expected Water
Savings.

Wurtsbaugh, W. A., C. Miller, S. E. Null, R. J. DeRose, P. Wilcock, M. Hahnenberger, F. Howe, and
J. Moore (2017). Decline of the World’s Saline Lakes. Nature Geoscience 10(11), 816–821.

34



Appendix

A A Theory of a Rural-Urban Water Transfer

In this appendix, we develop a model of rural economy that sees a rural-urban water transfer. We
start with a baseline general equilibrium model of a rural economy that transfers some of its water
resource to an urban region. Then, we extend it to incorporate unemployment of some production
factors, followed by policy implications and their empirical relevance.

A.1 Baseline Model

We develop a general equilibrium representation of a regional economy with three sectors: an
agricultural sector (A), a manufacturing sector (M ), and a water-based ecosystem (tourism) service
sector (E). We derive a general set of results showing the changes in the originating rural region
as a result of rural-urban water transfer.

Among the three sectors, the agricultural sector is the domain sector with the largest share of
labor. Assume the rural water availability, W , follows the equation of motion:

dW

dt
≡ Ẇ = σ̄ − ζW −WA −WM −WT (A1)

where σ̄ is water inflow; ζW is water outflow, which is assumed to be a function of the amount
of water with constant outflow rate ζ for simplicity; WA and WM are the amount of water used
in the agricultural and manufacturing sectors, respectively; and WT ≥ 0 is the amount of water
transferred.

The agricultural sector produces output using land, skilled labor, unskilled labor, and water,
while the manufacturing sector uses skilled labor and water. The ecosystem service sector only
uses unskilled labor and water that remains in the system. Production technologies are repre-
sented by the following production functions:

QA = QA(LA, SA, UA,WA) (A2)
QM = QM (SM ,WM ) (A3)

QE = UEW (A4)

where Qj , Sj , Uj , and Wj are production quantity, skilled labor employed, unskilled labor em-
ployed, and water usage in sector j = A,E,M ; respectively and when applicable, and LA is land
usage by agriculture. All the usual neoclassical assumptions are maintained for production func-
tions in (A2) and (A3).

Skilled labor, unskilled labor, and water are assumed to be freely mobile across their respective
sectors. We also maintain that all factors are fully employed. We will relax this latter assumption
in the next subsection. Full employment implies that:

αSA
QA + αSM

QM = S̄ (A5)
αUA

QA + αUE
QE = Ū (A6)

αWAQA + αWMQM = W̄ (A7)
αLAQA = L̄ (A8)
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where L̄, S̄, and Ū are land, skilled labor, and unskilled labor amounts in this regional economy,
respectively. The amount of water withdrawn from the ecological system for local use is W̄ . It
directly follows from equation (A1) that the steady-state level of water in the system is W ∗ =
(σ̄− W̄ −WT )/ζ. Clearly, as expected, ∂W ∗/∂WT < 0. Moreover, here and in the rest of the paper,
we denote by αij the respective per-unit amount of factor i = L,U,W in sector j = A,M,S (e.g.,
αWA ≡ WA/QA is the water usage per unit of agricultural good). Cost minimization implies that:

αij = Cij(γL, γS , γU , γW ) (A9)

where γL, γS , γU , and γW are land price, skilled wage, unskilled wage, and water price respec-
tively, for i = L, S, U,W and j = A,E,M .

Assuming that all markets are perfectly competitive, the zero-profit conditions imply:

αLAγL + αSAγS + αUAγU + αWAγW = PA (A10)
αSMγS + αWMγW = PM (A11)

αUEγU = PE (A12)

where Pj denotes the price of good j = A,E,M . All good prices are exogenous due to our regional
rural economy being small relative to the global economy.

By differentiating equations (A10)-(A12), where x̂ ≡ dx
x denotes the proportional change in

variable x, we obtain:

θLAγ̂L + θSAγ̂S + θUAγ̂U + θWAγ̂W = 0 (A13)
θSM γ̂S + θWM γ̂W = 0 (A14)

γ̂U = Ŵ ∗ (A15)

where θij is the factor i’s cost share in sector j (e.g., θSA ≡ γSαSA
PA

is cost share of skilled labor in
agriculture).32

Equation (A15) relates changes in unskilled wage to the changes in the steady state level of
water in the system, indicating that a rural-urban water transfer decreases wages for unskilled
labor, ceteris paribus. Next, we differentiate UE = αUEW

∗/αWE and manipulate the result to
obtain ÛE = α̂UE − α̂WE + Ŵ ∗.33 Note also that α̂UE − α̂WE = −σE γ̂U , where σE is the input
elasticity of substitution in sector E, which amounts to unity due to its Cobb-Douglas production
function, implying that:

ÛE = −γ̂U + Ŵ ∗ = 0 (A16)

where the last equality follows from equation (A15). On the one hand, since ÛA = −ÛE due
to the full employment of unskilled labor (i.e., (A6)), we conclude that ÛA = 0. On the other
hand, a proportional change in unskilled labor demand is ÛA = −σA

UL(γ̂U − γ̂L), where σA
UL is the

substitution elasticity of unskilled labor and land in agriculture.34 It follows that σA
UL(γ̂U−γ̂L) = 0,

which implies that:
γ̂L = γ̂U (A17)

32Note that we made use of P̂j = 0, j = A,M,S, due to our small open economy assumption and the fact that at any
equilibrium we have θLAα̂LA + θSAα̂SA + θUAα̂UA + θWAα̂WA = 0 and θSM α̂SM + θWM α̂WM = 0.

33Recall that UE = αUEQE and W ∗ = αWEQE . Hence, we have UE = αUEW
∗/αWE .

34Recall that αiA = iA/QA, i = L,U . Hence, UA = αUAL̄/αLA, where LA = L̄ due to the full employment of land.
Differentiating this results in ÛA = α̂UA − α̂LA = −σA

UL(γ̂U − γ̂L), where the last equality follows from the definition
of elasticity of substitution between unskilled labor and land in agriculture.
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That is, following (A15) and (A17), a reduction in steady-state water level reduces the price of
land. Finally, substitute equation (A15) and A17 in equation (A11) and solve the system of equa-
tions (A13) and (A14) to obtain:

γ̂S =
ωM (θLA + θUA)

θSA(ωA − ωM )
Ŵ ∗ (A18)

γ̂W = − γS(θLA + θUA)

γW θSA(ωA − ωM )
Ŵ ∗ (A19)

where ωA ≡ WA/SA and ωM ≡ WM/SM are water intensity ratios in the agriculture and man-
ufacturing sectors, respectively. It is noteworthy from (A18) and (A19) that ξS ≡ ωM (θLA +
θUA)/θSA(ωA − ωM ) and ξW ≡ γS(θLA + θUA)/γW θSA(ωA − ωM ) are water elasticities for skilled
wage and water price, respectively. As it is evident from equation (A18)-(A19), the effects of water
stock on skilled labor and water price crucially depend on water intensity ranking. We highlight
this in the following proposition.

Proposition A1. Water price (skilled labor wage) is decreasing (increasing) in steady-state level of water
in the system if agriculture is more water intensive than manufacturing. Land price and the unskilled labor
wage are increasing in steady-state water level regardless of water intensity rankings.

As it is the case for any general equilibrium analysis, there are many moving parts here. To
grasp the intuition behind this result, consider a reduction in water stock. This directly reduces the
marginal productivity of unskilled labor in the ecosystem service sector. We will show shortly in
this appendix that the sectoral supply of unskilled labor does not change, resulting in a reduction
in the unskilled wage rate the ecosystem service sector. Also, we will show shortly that water
usage in the agricultural sector falls, reducing the marginal productivity of unskilled labor and
land in this sector. Since land supply and sectoral supply of unskilled labor remain unchanged (as
will be seen shortly), unskilled wages and land price must fall.

The effect on skilled wage is less straightforward, since the sectoral supply of skilled labor
changes and water usage in agriculture and manufacturing may change differently. As we shall
show shortly, water usage in agriculture falls unambiguously if the steady state level of water in
the system falls. This will shift down the marginal productivity of skilled labor as well as its de-
mand (i.e., PAMPSA ≡ PA∂QA/∂SA). In contrast, water usage in manufacturing may fall or rise.
Hence, skilled labor demand in manufacturing may shift up or down. We depict two scenarios
in Figure A1, where PMMPS1

M denotes the skilled labor demand by manufacturing if its water
usage goes up, while PMMPS2

M denotes the skilled labor demand by this sector if its water usage
falls as a result of a reduction in the steady state water level in the system. Note the width of
the box measures the endowment of skilled labor and that skilled labor employment in agricul-
ture (manufacturing) is measured from left to right (right to left). Under both scenarios skilled
wages fall and skilled labor employment in manufacturing (agriculture) rises (falls). Despite the
substitutablity of labor for water in the agricultural sector, both water usage and skilled labor em-
ployment fall in this sector. Because the water to skilled labor ratio must fall due to an increase in
the land price to skilled wage ratio (i.e., γW /γS), the percentage decrease in water usage must be
more than that of skilled labor employment.

We have established that a reduction in water lowers both skilled and unskilled wages, given
that agriculture is water intensive. It is interesting to explore the effects of steady state level of
water on the skilled-unskilled wage gap. Using equations (A18) and (A19), we obtain:

γ̂S − γ̂U = (ξS − 1)Ŵ ∗ (A20)
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Figure A1: The effects of a reduction in the steady state water level in the system on skilled labor
market.
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where ξS is the water elasticity of skilled wages, as defined previously. The following results
formally address the effects of water on wage inequality.

Proposition A2. Assuming that agriculture is water intensive, the skilled-unskilled wage gap is decreasing
in the steady state level of water if skilled wage is water inelastic (i.e., ξS < 1).

To make a sense of this, note from equation (A15) that the water elasticity of unskilled wage
is unity. Hence, proportional changes in skilled wages as a result of a change in the steady state
level of water will fall short of those of unskilled wages when ξS < 1, resulting in an increase in
the wage gap as a result of a decrease in steady state water level. It can also be shown with some
algebraic manipulation that ξS < 1 if θSA > ωM/(ωA − ωM ). When ξS < 1, a reduction in the
steady state water level increases inequality given that the distributive share of skilled labor in
agriculture (i.e., θSA) is sufficiently high, despite the fact that agriculture is water intensive. We
expect that these conditions will be met in our test case.

Next, we explore the effects of a change in the steady state level of water in the system on
sectoral employment and output. Since we have already established that the price of land is pos-
itively related to system water level, and a decrease in the price of land increases agricultural
unit-land demand (i.e., αLA), agricultural output must fall since LA = L̄ due to the full employ-
ment of land. In particular, we have Q̂A = −α̂LA. Moreover, since we have established earlier
that ÛE = ÛA = 0, it directly follows from (A4) that Q̂E = Ŵ ∗. Hence, as expected, production in
sector E is increasing in the steady state water level. To explore the effects of W ∗ on QM and W̄ ,
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differentiate (A5) and (A7) to obtain:

λSAQ̂A + λSM Q̂M + λSAα̂SA + λSM α̂SM = 0 (A21)

λWAQ̂A + λWM Q̂M + λWAα̂WA + λWM α̂WM = ˆ̄W (A22)

where λij is the usage share of factor i = S,M in sector j = A,M (e.g., λSA ≡ SA/S̄). Also, recall
that the substitution elasticity between water and skilled labor for sector j = A,M , is defined as
σj
WS ≡ (α̂Wj− α̂Sj)/(γ̂S− γ̂W ). Using these two equations (one for each of the two sectors) as well

as (A18)-(A19) and (A21)-(A22), we can solve for proportional changes in the per-unit usage of
skilled labor and of water as well as the change in manufacturing output. In particular, we obtain:

α̂SA = Ω− θWA∆AŴ
∗ (A23)

α̂SM = −θWM∆MŴ ∗ (A24)

α̂WA = ΩA + θSA∆AŴ
∗ (A25)

α̂WM = θSM∆MŴ ∗ (A26)

Q̂M = − λSA

λSM

(
Q̂A +ΩA − θWA∆AŴ

∗
)
+ θWM∆MŴ ∗ (A27)

where Ω ≡ −(θLAα̂LA+θUAα̂UA) and ∆j ≡ σj
WS(ξS + ξW ) > 0, j = A,M . Recall also that we have

already established that a decrease in the steady state level of water increases per-unit unskilled
labor employment and land usage as well as the agricultural output (i.e., α̂LA/Ŵ

∗ < 0, α̂UA/Ŵ
∗ <

0, and Q̂A/Ŵ
∗ > 0). Hence, Ω is positive. Therefore, we conclude from (A24)-(A26) that αWA and

αWM are increasing while αSM is decreasing in the steady state level of water.
The effect of the steady state level of water on QM is generally ambiguous as it is evident

from (A27). However, this effect of reduction in water on manufacturing output is negative if
the share of skilled labor employment in agriculture is sufficiently small. To see this note that
limλSA→0 Q̂M = θWM∆MŴ ∗, implying that a reduction in the steady state level of water reduces
manufacturing output when the share of skilled labor employment in agriculture is very small.
We highlight the effect on sectoral output by the following formal result.

Proposition A3. Both agricultural and ecosystem production levels are increasing in the steady state level
of water in the system. While the impact on manufacturing output is generally ambiguous, it is increasing
in steady state level of water if the share of skilled labor employment in agriculture is sufficiently small.

There is no straightforward way to infer the effects of the steady state level of water on its
consumptive level unambiguously using the usual comparative static derivation we have em-
ployed so far, i.e., the solution for ˆ̄W that one can obtain from the above system of equations
(not presented here). Nevertheless, such a result can be derived, as highlighted by the following
proposition and proof.

Proposition A4. A reduction in the steady state level of water in the system reduces the consumptive level
of water in the rural economy.

Proof. We prove this result by negation. Assume by negation that ˆ̄W ≥ 0 in response to Ŵ ∗ < 0
(i.e., W̄ is non-increasing in W ∗). Since α̂WA < 0 and Q̂A < 0, we conclude that:

ŴA < 0 (A28)
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It also directly follows from the definition of ω and equations (A23)-(A26) that:

ω̂A = ∆AŴ
∗ (A29)

ω̂M = ∆MŴ ∗ (A30)

where we have used ω̂j = α̂Wj − α̂Sj , j = A,M . Hence, we conclude from these equations that in
response to Ŵ ∗ < 0, we have:

ω̂A < 0 (A31)
ω̂M < 0 (A32)

which is also intuitive as it states that water intensity ratios in both sectors fall if steady state water
level falls. Next, recall our negation assumption that states:

ˆ̄W ≡ ŴA + ŴM ≥ 0 (A33)

which along with equation (A28) imply that:

ŴM > 0. (A34)

Now, equation (A32) and (A34) imply that:

ŜM > 0 (A35)

Note also that full employment of skilled labor implies that ŜA = −ŜM , which along with equation
(A35) conclude that:

ŜA < 0 (A36)

Now, on the one hand, equations (A28), (A31) and (A36) imply that:

|ŜA| < |ŴA| (A37)

On the other hand, (A32), (A34) and (A35) imply that:

ŴM < ŜM (A38)

Finally, (A37) and (A38) imply that:

ŴM < ŜM = |ŜA| < |ŴA|

that, is ŴM < |ŴA|, which in turn implies that ˆ̄W < 0, which contradicts our negation assumption.

It is also interesting to explore the impact of a water transfer on aggregate income. Aggregate
income, defined from the factor side, is I ≡ γLLA + γS(SA + SM ) + γU (UA +UE) + γW (W̄ +WT ).
Differentiating this equation, we obtain:

Î = κLγ̂L + κS γ̂S + κU γ̂U + κW γ̂W + κW
ˆ̄W + ŴT

where κi is income share of factor i = L, S, U,W , e.g., κL ≡ γLL̄/I . This equation implies that the
effect of a change in water transfer is ambiguous since its first three terms and the fifth term are
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negative while the forth and the last terms are positive. Note that L̂A = ˆ̄S = ˆ̄U = 0 due to full
employment of labor and land.

A.2 Water Transfer Policy Implications

A.2.1 Unrestricted-Transfer

Suppose the water transfer takes place without being tied to the water consumption level in the
regional rural economy. We have Ŵ ∗ < 0 under this scenario. Then, it follows from Propositions
1-3 that γ̂L < 0, γ̂S < 0, γ̂U < 0, γ̂W > 0. From these results, we make the following predictions:

(i) A water transfer raises the return to water in the water transferring region;

(ii) A water transfer reduces the returns to skilled and unskilled labor in the rural region;

(iii) A water transfer can increase wage inequality;

(iv) Land price falls;

(v) Agricultural output and ecosystem service output fall, while the effect on manufacturing is
generally ambiguous.

If the predictions hold and the amount of water that remains in the system decreases, we expect
an increase in water values—and therefore the marginal productivity of water—and a decrease in
both skilled and unskilled labor in the agricultural sector. Furthermore, if water is transferred out
of the system, the size of the resource providing the ecosystem service will decline.

Under the fallow-transfer policy, water is maintained in the ecosystem (by design), while the
unrestricted-transfer policy leads to a decrease in system water (and thus ecosystem services).
While both policies lead to reductions in agricultural employment, the unrestricted policy allows
factor prices to change, leading to more water intensive production (i.e., a lower water-to-labor
ratio) since wages fall for both types of labor. In this sense, the untied policy is less distortionary
because there is no need for the displacement of labor.

A.2.2 Fallow-Transfer: the Restricted Transfer and Presence of Factor Unemployment

Now, we consider unemployment of unskilled labor due to a binding minimum wage when trans-
fers are restricted via fallowing, which removes land from production and implies unemployment
of land. Due to the existence of unskilled labor and land unemployment, unskilled labor and land
markets are demand determined. Hence, we have to modify equations (A6) and (A8) to:

PA
∂QA

∂UA
= γ̄U = PE

∂QE

∂UE
(A39)

PA
∂QA

∂LA
= γ̄L (A40)

where γ̄U is the binding minimum wage and γ̄L is fixed land price due to infinitely elastic supply
in the neighborhood of equilibrium due to land unemployment. In addition, these fixed factor
prices must enter equations (A9), (A10), and (A12). We then, have γ̂U = γ̂L = 0. Finally, equations
(A13) and (A14), change to:

θSAγ̂S + θWAγ̂W = 0 (A41)
θSM γ̂S + θWM γ̂W = 0 (A42)
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which, in turn, imply that γ̂S = γ̂W = 0. We also maintain that dWT ≤ −dWA and Ŵ ∗ = 0. More-
over, these results are consistent with the fact that factor prices are linked to the steady state level
of water in our setup. Since the steady state level of water remains unchanged, marginal produc-
tivity of unskilled labor, and hence unskilled labor demand does not shift. This, in turn, implies
that unskilled labor employment in sector E does not change since γU also does not change. We
conclude that Q̂E = 0, as the steady state level of water and labor employment in sector E re-
main unchanged. However, a reduction in WA, due to the rural-urban water transfer, reduces the
marginal productivity of unskilled labor in agriculture, hence shifting down the unskilled labor
demand. Given that the unskilled wage does not change, unskilled labor employment in agricul-
ture falls. The unskilled agricultural workers who lose their jobs must join the pool of unemployed
workers since we have established that ÛE = 0. The effects of the water transfer on agricultural
land use will be similar to that of unskilled labor, i.e., land usage falls, resulting in more land
unemployment (i.e., land fallowing).

The effect on the skilled labor market is different due to its full employment. The lowered wa-
ter usage in agriculture lowers the marginal productivity of skilled labor in agriculture and hence
its demand. With this direct effect, at the initial equilibrium, the marginal productivity of skilled
labor would be higher in manufacturing than in agriculture, which results in movement of skilled
labor from the latter to the former. As factor intensities in both sectors remain unchanged due to
the rigidity of factor prices, some water must also move from agriculture to manufacturing to keep
ωM unchanged. This will also lead to an increase in productivity of skilled labor in manufactur-
ing, which shifts up its demand for skilled workers. All in all, the employment of skilled workers
in manufacturing (agriculture) goes up (down). We depict this in figure A2, where superscript
1 denotes post-transfer. Without ambiguity, agricultural (manufacturing) production falls (rises)
since both skilled and unskilled labor employment and water and land usage (skilled labor and
water usage) in agriculture (manufacturing) fall (rise). Production in the ecosystem service sector
does not change since both its employment and the steady state level of water do not change.

Under the fallow-transfer policy, water transfers must be removed directly from consumptive
use in agriculture, so that overall water in the system remains unchanged, i.e., land is fallowed
and conserved water is exported, less some amount to maintain the amount of water that remains
in the system. This implies that Ŵ ∗ = 0. It follows from preceding analysis that γ̂U = γ̂S =
γ̂W = γ̂L = 0, i.e., factor prices do not change. It also follows that under this policy, dWM > 0.
Moreover, from our analysis of the previous subsection that employment of skilled and unskilled
labor in agriculture falls, unskilled workers who lose their jobs in agriculture must join the pool of
unemployed, while skilled workers move to manufacturing. The effects of this policy on regional
aggregate income are negative. To see this, note that in this case we have ˆ̄W = ŴT since Ŵ ∗ = 0.
Therefore, Î = κLL̂A + κU ÛA since all factor price do not change and ˆ̄S = 0. Regional income falls
due to the lost labor and land income as a result of their underemployment.

All in all, the consequences in factor markets would lead to a decrease agricultural output and
increase in manufacturing output. Unemployment also rises. Since the steady state water level
and employment in the service sector remain unchanged, sector output also remains unchanged.
Hence, an increase in the water trade under the fallow-transfer policy will cause:

(i) a decrease in agricultural output;

(ii) a decrease in the employment of skilled and unskilled workers;

(iii) an increase in manufacturing output;

(iv) a decrease in aggregate income.

42



Figure A2: The effects of a restricted rural-urban water transfer on skilled labor market.
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B Data Description

Table B1: Variable Descriptions and Sources.

Outcome Variables Source Period Notes
Harvested acreage USDA 1980-2018 Data from annual crop report compiled by the Califor-

nia County Agricultural Commissioners (CCAC) pro-
viding detailed annual agricultural production data
at the county level. https://www.nass.usda.
gov/Statistics_by_State/California/
Publications/AgComm/index.php

Per capita income BEA 1980-2018

Skilled labor
employment

Census
Bureau

1992-2018 Quarterly employment is the estimate of the number
of jobs that are held on both the first and last day of
the quarter with the same employer. Our measure is
the mean of the four quarters in a year.

Unskilled labor
employment

Census
Bureau

1992-2018 Quarterly employment is the estimate of the number
of jobs that are held on both the first and last day of
the quarter with the same employer. Our measure is
the mean of the four quarters in a year.

Crop high-skill
earnings

Census
Bureau

1992-2018 Yearly average of four quarters’ average monthly
earnings (in dollars) of college or higher degree em-
ployees with stable jobs in NAICS111 subsector.

Crop low-skill
earnings

Census
Bureau

1992-2018 Yearly average of four quarters’ average monthly
earnings (in dollars) of high school or lower degree
employees with stable jobs in NAICS111 subsector.

Air pollutant days EPA PM10:
1980-2018

PM2.5:
1998-2018
Ozone and

NO2:
1994-2018

NAAQS standards in our data are based on the cur-
rent AQI breakpoints, regardless of year and are
as follows: PM2.5: 35µg/m3; PM10: 24-hour con-
centration exceeds 150µg/m3; NO2: 1-hour concen-
tration exceeds 100ppb; Ozone: 8-hour concentra-
tion exceeds 0.07ppm. https://www.epa.gov/
criteria-air-pollutants/naaqs-table

PM10 annual mean EPA 1990-2018 The weighted annual mean (mean weighted by calen-
dar quarter) for the year (in µg/m3).

PM2.5 annual mean EPA 2000-2018 The weighted annual mean (mean weighted by calen-
dar quarter) for the year (in µg/m3).

Satellite-Based PM2.5 van
Donkelaar
et al. (2021)

2000-2018 Mean and max annual global satellite-based fine par-
ticulate matter concentration estimates (in µg/m3).

Predictors Source Periods Notes

Farm proprietors’
income

BEA 1980-2018 Income (in $ millions) received by sole proprietorships
and partnerships that operate farms (excludes income
received by corporate farms).
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Table B1: (Continued).

Predictors Source Periods Notes
Farm proprietors’
employment

BEA 1980-2018 Employment of sole proprietors and non-corporate
partners in the farm industry in thousands of jobs.

Wage and salary
employment

BEA 1980-2018 Average annual number of full-time and part-time
jobs (thousands of jobs).

Wage and salary BEA 1980-2018 Aggregation of county wages and salaries (in billions
of dollars).

Proprietors’
employment

BEA 1980-2018 Proprietors’ income is the current-production income
(including income in kind) of sole proprietorships,
partnerships, and tax-exempt cooperatives. Includes
farm proprietors’ and nonfarm proprietors’ employ-
ment (in number of jobs).

Proprietors’ income BEA 1980-2018 The proprietor’s income is in billions of dollars.
https://apps.bea.gov/regional/histdata/
releases/1117lapi/index.cfm

White ag labor ratio Census
Bureau

1992-2018 Author calculation using LEHD number of stable jobs
in agricultural sector, white employees over total em-
ployment.

Male ag labor ratio Census
Bureau

1992-2018 Male employees over total employment.

Hispanic ag labor ratio Census
Bureau

1992-2018 Hispanic employees over total employment.

High school or higher ag
labor ratio

Census
Bureau

1992-2018 Employees with high school degree or higher over to-
tal employment.

Annual cattle values USDA 1980-2018 Data from annual crop report compiled by the Califor-
nia County Agricultural Commissioners (CCAC) pro-
viding detailed annual agricultural production data at
the county level.

Annual alfalfa hay
values

USDA 1980-2018 Data from annual crop report compiled by the Califor-
nia County Agricultural Commissioners (CCAC) pro-
viding detailed annual agricultural production data at
the county level.

Annual lettuce values USDA 1980-2018 Data from annual crop report compiled by the Califor-
nia County Agricultural Commissioners (CCAC) pro-
viding detailed annual agricultural production data at
the county level.

Annual melons values USDA 1980-2018 Data from annual crop report compiled by the Califor-
nia County Agricultural Commissioners (CCAC) pro-
viding detailed annual agricultural production data at
the county level.

Annual other vegetable
values

USDA 1980-2018 Data from annual crop report compiled by the Califor-
nia County Agricultural Commissioners (CCAC) pro-
viding detailed annual agricultural production data at
the county level.
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C Summary Statistics of Variables Used in Each Outcome Variable Anal-
ysis

Table C1: Summary Statistics for Variables Used in the Analysis of Log Harvested Acres.

Variable Sample Mean Std. Dev.
Log Harvested Acres 1,555 10.94 1.9
Farm Proprietors’ Income 1,555 119.20 223.43
Farm Proprietors’ Employment 1,555 1.44 1.52
Wage and Salary Employment 1,555 222.99 498.23
Wage and Salary 1,555 8,542.49 19,204.46
Proprietors’ Employment 1,555 52.67 100.84
Proprietors’ Income 1,555 1,523.13 2,773.80
Annual Cattle Values 1,555 44,888.45 93,886.92
Annual Alfalfa Hay Values 1,555 22,449.45 45,380.42
Annual Vegetable Values 1,555 119,730.20 342,839.10

Notes: (Unbalanced) data includes observations for 51 counties (the treatment county
and 50 control counties) for 1980-2018. Omitted counties include those with missing
observations and/or significant water transfer (due to other policy/agreements) dur-
ing the study period. All the variables, except Log Harvested Acres, are in thousands.

Table C2: Summary Statistics for Variables Used in the Analysis of Harvested Acres.

Variable Sample Mean Std. Dev.
Harvested Acres 1,555 188.68 265.08
Farm Proprietors’ Income 1,555 119.20 223.43
Farm Proprietors’ Employment 1,555 1.44 1.52
Wage and Salary Employment 1,555 222.99 498.23
Wage and Salary 1,555 8,542.49 19,204.46
Proprietors’ Employment 1,555 52.67 100.84
Proprietors’ Income 1,555 1,523.13 2,773.80
Annual Cattle Values 1,555 44,888.45 93,886.92
Annual Alfalfa Hay Values 1,555 22,449.45 45,380.42
Annual Vegetable Values 1,555 119,730.20 342,839.10

Notes: (Unbalanced) data includes observations for 51 counties (the treatment county
and 50 control counties) for 1980-2018. Omitted counties include those with missing
observations and/or significant water transfer (due to other policy/agreements) during
the study period. All the variables are in thousands.

46



Table C3: Summary Statistics for Variables Used in the Analysis of Log Hay Alfalfa Acres.

Variable Sample Mean Std. Dev.
Log Hay Alfalfa Acres 1,834 8.93 2.02
Farm Proprietors’ Income 1,834 105.71 211.98
Farm Proprietors’ Employment 1,834 1.31 1.45
Wage and Salary Employment 1,834 239.5 623.38
Wage and Salary 1,834 9,557.37 27,303.80
Proprietors’ Employment 1,834 59.65 156.6
Proprietors’ Income 1,834 1,819.15 5,465.98
Annual Alfalfa Hay Values 1,834 19,527.83 42,386.85

Notes: (Unbalanced) data includes observations for 52 counties (the treatment county
and 51 control counties) for 1980-2018. Omitted counties include those with miss-
ing observations and/or significant water transfer (due to other policy/agreements)
during the study period. All the variables, except Log Hay Alfalfa Acres, are in thou-
sands.

Table C4: Summary Statistics for Variables Used in the Analysis of Per Capita Income.

Variable Sample Mean Std. Dev.
Per Capita Income 2,106 29.32 16.68
Farm Proprietors’ Income 2,106 96.56 201.27
Farm Proprietors’ Employment 2,106 1.22 1.39
Wage and Salary Employment 2,106 253.32 626.78
Wage and Salary 2,106 10,511.04 28,889.29
Proprietors’ Employment 2,106 64.02 163.89
Proprietors’ Income 2,106 2,051.00 5,909.85

Notes: (Unbalanced) data includes observations for 54 counties (the treatment county
and 53 control counties) for 1980-2018. Omitted counties include those with miss-
ing observations and/or significant water transfer (due to other policy/agreements)
during the study period. All the variables are in thousands.

Table C5: Summary Statistics for Variables Used in the Analysis of Crop High-Skill Labor Em-
ployment (NAICS=111).

Variable Sample Mean Std. Dev.
Crop High Skill Labor Employment 1,008 687.40 889.37
Farm Proprietors’ Income 1,008 151.08 262.31
Farm Proprietors’ Employment 1,008 1.42 1.44
Wage and Salary Employment 1,008 225.66 412.64
Wage and Salary 1,008 10,616.88 20,934.10
Proprietors’ Employment 1,008 59.08 99.56
Proprietors’ Income 1,008 1,978.46 3,067.70
White Ag Labor Ratio 1,008 0.84 0.04
Male Ag Labor Ratio 1,008 0.70 0.07
Hispanic Ag Labor Ratio 1,008 0.50 0.14
High School or Higher Ag Labor Ratio 1,008 0.53 0.09
Annual Cattle Values 1,008 56,513.84 111,275.20
Annual Alfalfa Hay Values 1,008 27,007.97 51,994.56
Annual Vegetable Values 1,008 155,902.30 411,021.80

Notes: (Unbalanced) data includes observations for 48 counties (the treatment county
and 47 control counties) for 1992-2018. Omitted counties include those with missing
observations and/or significant water transfer (due to other policy/agreements) during
the study period. All the variables, except Crop High Skill Labor Employment, White
Ag Labor Ratio, Male Ag Labor Ratio, Hispanic Ag Labor Ratio, and High School or
Higher Ag Labor Ratio, are in thousands.
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Table C6: Summary Statistics for Variables Used in the Analysis of Crop Low-Skill Labor Employ-
ment (NAICS=111).

Variable Sample Mean Std. Dev.
Crop Low Skill Labor Employment 1,029 1,468.99 2,045.55
Farm Proprietors’ Income 1,029 148.07 260.46
Farm Proprietors’ Employment 1,029 1.40 1.43
Wage and Salary Employment 1,029 221.25 409.55
Wage and Salary 1,029 10,406.86 20,770.27
Proprietors’ Employment 1,029 57.98 98.84
Proprietors’ Income 1,029 1,940.81 3,047.41
White Ag Labor Ratio 1,029 0.85 0.04
Male Ag Labor Ratio 1,029 0.70 0.07
Hispanic Ag Labor Ratio 1,029 0.50 0.15
High School or Higher Ag Labor Ratio 1,029 0.53 0.09
Annual Cattle Values 1,029 55,585.80 110,323.20
Annual Alfalfa Hay Values 1,029 26,516.94 51,577.75
Annual Vegetable Values 1,029 152,728.60 407,396.30

Notes: (Unbalanced) data includes observations for 49 counties (the treatment county
and 48 control counties) for 1992-2018. Omitted counties include those with missing
observations and/or significant water transfer (due to other policy/agreements) during
the study period. All the variables, except Crop Low Skill Labor Employment, White Ag
Labor Ratio, Male Ag Labor Ratio, Hispanic Ag Labor Ratio, and High School or Higher
Ag Labor Ratio, are in thousands.

Table C7: Summary Statistics for Variables Used in the Analysis of Ag High-Skill Labor Employ-
ment (NAICS=11).

Variable Sample Mean Std. Dev.
Ag High Skill Labor Employment 1,050 1,398.96 2,135.29
Farm Proprietors’ Income 1,050 145.17 258.64
Farm Proprietors’ Employment 1,050 1.37 1.43
Wage and Salary Employment 1,050 217 406.52
Wage and Salary 1,050 10,205.03 20,609.87
Proprietors’ Employment 1,050 56.89 98.14
Proprietors’ Income 1,050 1,904.59 3,027.42
White Ag Labor Ratio 1,050 0.85 0.04
Male Ag Labor Ratio 1,050 0.70 0.07
Hispanic Ag Labor Ratio 1,050 0.49 0.15
High School or Higher Ag Labor Ratio 1,050 0.53 0.09
Annual Cattle Values 1,050 54,654.46 109,409.30
Annual Alfalfa Hay Values 1,050 26,059.64 51,161.19
Annual Vegetable Values 1,050 149,702.70 403,854.40

Notes: (Unbalanced) data includes observations for 49 counties (the treatment county
and 48 control counties) for 1992-2018. Omitted counties include those with missing
observations and/or significant water transfer (due to other policy/agreements) during
the study period. All the variables, except Ag High Skill Labor Employment, White Ag
Labor Ratio, Male Ag Labor Ratio, Hispanic Ag Labor Ratio, and High School or Higher
Ag Labor Ratio, are in thousands.
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Table C8: Summary Statistics for Variables Used in the Analysis of Ag Low-Skill Labor Employ-
ment (NAICS=11).

Variable Sample Mean Std. Dev.
Ag Low Skill Labor Employment 1,049 2,856.66 4,443.42
Farm Proprietors’ Income 1,049 145.3 258.72
Farm Proprietors’ Employment 1,049 1.37 1.43
Wage and Salary Employment 1,049 217.2 406.66
Wage and Salary 1,049 10,214.64 20,617.34
Proprietors’ Employment 1,049 56.94 98.17
Proprietors’ Income 1,049 1,906.36 3,028.32
White Ag Labor Ratio 1,049 0.85 0.04
Male Ag Labor Ratio 1,049 0.70 0.07
Hispanic Ag Labor Ratio 1,049 0.49 0.15
High School or Higher Ag Labor Ratio 1,049 0.53 0.09
Annual Cattle Values 1,049 54,703.48 109,450.00
Annual Alfalfa Hay Values 1,049 26,084.40 51,179.29
Annual Vegetable Values 1,049 149,845.40 404,020.50

Notes: (Unbalanced) data includes observations for 49 counties (the treatment county
and 48 control counties) for 1992-2018. Omitted counties include those with missing
observations and/or significant water transfer (due to other policy/agreements) during
the study period. All the variables, except Ag Low Skill Labor Employment, White Ag
Labor Ratio, Male Ag Labor Ratio, Hispanic Ag Labor Ratio, and High School or Higher
Ag Labor Ratio, are in thousands.

Table C9: Summary Statistics for Variables Used in the Analysis of Crop High-Skill Earn-
ings/Crop Low-Skill Earnings.

Variable Sample Mean Std. Dev.
Crop High-Skill Earn/Crop Low-Skill Earn 1,350 1.33 0.24
Farm Proprietors’ Income 1,350 124.03 237.91
Farm Proprietors’ Employment 1,350 1.23 1.32
Wage and Salary Employment 1,350 290.47 662.09
Wage and Salary 1,350 14,116.63 34,215.60
Proprietors’ Employment 1,350 80.11 191.14
Proprietors’ Income 1,350 2,867.61 7,149.11

Notes: (Unbalanced) data includes observations for 53 counties (the treatment county
and 52 control counties) for 1980-2018. Omitted counties include those with miss-
ing observations and/or significant water transfer (due to other policy/agreements)
during the study period. All the variables, except Crop High-Skill Earnings/Crop
Low-Skill Earnings, are in thousands.

Table C10: Summary Statistics for Variables Used in the Analysis of PM10 Days.

Variable Sample Mean Std. Dev.
PM10 Days 1,876 12.81 33.65
Days with AQI 1,876 334.62 80.13
Median AQI 1,876 48.54 21.53
Farm Proprietors’ Income 1,876 107.37 210.63
Farm Proprietors’ Employment 1,876 1.32 1.43
Wage and Salary Employment 1,876 283.48 657.8
Wage and Salary 1,876 11,782.76 30,366.88
Proprietors’ Employment 1,876 71.55 172.14
Proprietors’ Income 1,876 2,297.81 6,217.10

Notes: (Unbalanced) data includes observations for 54 counties (the treatment county
and 53 control counties) for 1980-2018. Omitted counties include those with miss-
ing observations and/or significant water transfer (due to other policy/agreements)
during the study period. All the variables, except PM10 Days, Days with AQI, and
Median AQI, are in thousands.
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Table C11: Summary Statistics for Variables Used in the Analysis of PM2.5 Days.

Variable Sample Mean Std. Dev.
PM2.5 Days 1,069 83.46 74.02
Days with AQI 1,069 343.73 69.67
Median AQI 1,069 47.60 18.27
Farm Proprietors’ Income 1,069 135.89 258.48
Farm Proprietors’ Employment 1,069 1.14 1.20
Wage and Salary Employment 1,069 294.78 670.70
Wage and Salary 1,069 15,596.14 36,842.41
Proprietors’ Employment 1,069 83.92 201.75
Proprietors’ Income 1,069 3,208.93 7,788.22

Notes: (Unbalanced) data includes observations for 54 counties (the treatment county
and 53 control counties) for 1998-2018. Omitted counties include those with miss-
ing observations and/or significant water transfer (due to other policy/agreements)
during the study period. All the variables, except PM2.5 Days, Days with AQI, and
Median AQI, are in thousands.

Table C12: Summary Statistics for Variables Used in the Analysis of Ozone Days.

Variable Sample Mean Std. Dev.
Ozone Days 1,276 227.11 101.21
Days with AQI 1,276 341.68 73.15
Median AQI 1,276 47.30 18.31
Farm Proprietors’ Income 1,276 124.86 242.79
Farm Proprietors’ Employment 1,276 1.19 1.28
Wage and Salary Employment 1,276 287.71 660.73
Wage and Salary 1,276 14,361.13 34,802.35
Proprietors’ Employment 1,276 80.22 193.24
Proprietors’ Income 1,276 2,935.39 7,303.44

Notes: (Unbalanced) data includes observations for 54 counties (the treatment county
and 53 control counties) for 1994-2018. Omitted counties include those with miss-
ing observations and/or significant water transfer (due to other policy/agreements)
during the study period. All the variables, except Ozone Days, Days with AQI, and
Median AQI, are in thousands.

Table C13: Summary Statistics for Variables Used in the Analysis of NO2 Days.

Variable Sample Mean Std. Dev.
NO2 Days 1,276 26.42 45.47
Days with AQI 1,276 341.68 73.15
Median AQI 1,276 47.30 18.31
Farm Proprietors’ Income 1,276 124.86 242.79
Farm Proprietors’ Employment 1,276 1.19 1.28
Wage and Salary Employment 1,276 287.71 660.73
Wage and Salary 1,276 14,361.13 34,802.35
Proprietors’ Employment 1,276 80.22 193.24
Proprietors’ Income 1,276 2,935.39 7,303.44

Notes: (Unbalanced) data includes observations for 54 counties (the treatment county
and 53 control counties) for 1994-2018. Omitted counties include those with missing
observations and/or significant water transfer (due to other policy/agreements) dur-
ing the study period. All the variables, except NO2 Days, Days with AQI, and Median
AQI, are in thousands.
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Table C14: Summary Statistics for Variables Used in the Analysis of PM10 Annual Mean.

Variable Sample Mean Std. Dev.
PM10 Annual Mean 1,160 29.4 15.27
Days with AQI 1,160 351.5 53.36
Median AQI 1,160 49.75 19.46
Farm Proprietors’ Income 1,160 139.05 248.8
Farm Proprietors’ Employment 1,160 1.39 1.44
Wage and Salary Employment 1,160 342.9 724.39
Wage and Salary 1,160 15,965.13 36,480.61
Proprietors’ Employment 1,160 92.39 205.96
Proprietors’ Income 1,160 3,189.44 7,608.04

Notes: (Unbalanced) data includes observations for 50 counties (the treatment county
and 49 control counties) for 1990-2018. Omitted counties include those with missing
observations and/or significant water transfer (due to other policy/agreements) dur-
ing the study period. All the variables, except PM10 Annual Mean, Days with AQI,
and Median AQI, are in thousands.

Table C15: Summary Statistics for Variables Used in the Analysis of PM2.5 Annual Mean.

Variable Sample Mean Std. Dev.
PM2.5 Annual Mean 612 10.62 4.14
Days with AQI 612 360.57 30.98
Median AQI 612 51.58 17.05
Farm Proprietors’ Income 612 201.12 314.45
Farm Proprietors’ Employment 612 1.25 1.20
Wage and Salary Employment 612 392.6 753.78
Wage and Salary 612 22,151.29 43,448.74
Proprietors’ Employment 612 114.6 235.98
Proprietors’ Income 612 4,496.36 9,193.49

Notes: (Unbalanced) data includes observations for 43 counties (the treatment county
and 42 control counties) for 2002-2018. Omitted counties include those with missing
observations and/or significant water transfer (due to other policy/agreements) dur-
ing the study period. All the variables, except PM2.5 Annual Mean, Days with AQI,
and Median AQI, are in thousands.

Table C16: Summary Statistics for Variables Used in the Analysis of Satellite-Based PM2.5 Mean.

Variable Sample Mean Std. Dev.
Satellite-Based PM2.5 Mean 963 6.72 2.46
Days with AQI 963 345.62 65.75
Median AQI 963 47.76 18.08
Farm Proprietors’ Income 963 144.28 267.95
Farm Proprietors’ Employment 963 1.11 1.14
Wage and Salary Employment 963 297.9 674.29
Wage and Salary 963 16,235.79 37,919.28
Proprietors’ Employment 963 86.00 206.32
Proprietors’ Income 963 3,347.24 8,046.33

Notes: (Unbalanced) data includes observations for 54 counties (the treatment county
and 53 control counties) for 2000-2018. Omitted counties include those with missing
observations and/or significant water transfer (due to other policy/agreements) dur-
ing the study period. All the variables, except Satellite-Based PM2.5 Mean, Days with
AQI, and Median AQI, are in thousands.
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Table C17: Summary Statistics for Variables Used in the Analysis of Satellite-Based PM2.5 Max.

Variable Sample Mean Std. Dev.
Satellite-Based PM2.5 Max 963 12.24 3.62
Days with AQI 963 345.62 65.75
Median AQI 963 47.76 18.08
Farm Proprietors’ Income 963 144.28 267.95
Farm Proprietors’ Employment 963 1.11 1.14
Wage and Salary Employment 963 297.9 674.29
Wage and Salary 963 16,235.79 37,919.28
Proprietors’ Employment 963 86.00 206.32
Proprietors’ Income 963 3,347.24 8,046.33

Notes: (Unbalanced) data includes observations for 54 counties (the treatment county
and 53 control counties) for 2000-2018. Omitted counties include those with missing
observations and/or significant water transfer (due to other policy/agreements) dur-
ing the study period. All the variables, except Satellite-Based PM2.5 Max, Days with
AQI, and Median AQI, are in thousands.
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D Complete/Additional Empirical Results

Table D1: Estimated Annual Treatment Effects from Synthetic Control Analysis.

Mean Min Max
Log Harvested Acres -0.18 -0.52 -0.03
Harvested Acres (in thousands) -57.84 -251.53 -10.41
Per Capita Income (in thousands) -0.95 -3.12 0.45
Crop High-Skill Labor Employment -279.26 -381.39 -196.77
Crop Low-Skill Labor Employment -628.40 -954.27 -347.97
Ag High-Skill Labor Employment -493.46 -605.79 -250.15
Ag Low-Skill Labor Employment -1,372.08 -1,806.62 -836.88
Crop High-Skill Earn/Crop Low-Skill Earn 0.22 0.10 0.38
PM10 Days 27.45 -27.90 109.61
PM2.5 Days 12.61 -25.08 101.37
Ozone Days -17.25 -116.83 58.99
NO2 Days 24.86 -9.96 57.59
PM10 Annual Mean (µg/m3) 15.11 -4.79 28.55
PM2.5 Annual Mean (µg/m3) 1.64 -3.11 7.22

Notes: Mean/min/max annual treatment effect is obtained by taking the aver-
age/minimum/maximum of differences between the treatment outcome and its
synthetic counterpart (i.e., measured treatment effect) for the post-intervention
period (2004-2018).
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Figure D1: Synthetic Control Analysis for Log Harvested Acres.
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Notes: Graphical summary of synthetic control output for Log Harvested Acres. Right panel shows the time path
realized by Imperial County and the synthetic Imperial County. Left panel shows the falsification test results of the
estimated treatment effect for Imperial County along with placebo effects for control units. Donor pool for Harvested
Acres consists of 29 control counties. See appendix C for the list of control variables included in the analysis. To refine
inferences from falsification tests, we consider control counties with pre-intervention RMSPEs that are less than or equal
to twice that of a treatment unit (Abadie et al., 2010). The vertical line represents the QSA effective year.

Figure D2: Event Study Analysis for Log Harvested Acres.
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Notes: Event study analysis for Log Harvested Acres. Right panel shows the estimated treatment effect for Impe-
rial County using all available (50) control counties, where omitted counties include those with missing observations
and/or significant water transfer (due to other policy/agreements) during the study period. Left panel shows the es-
timated treatment effect for Imperial County using only control counties that receive nonzero weight in the synthetic
control analysis (see table E1). See appendix C for the list of control variables included in the analysis. Both models
control for county and year fixed effects. The confidence bounds are obtained using robust standard errors. The vertical
line represents the QSA effective year.
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Table D2: Difference-in-Differences Analysis for Log Harvested Acres.

(1) (2)
1(Imperial)×1(Post-intervention) -0.1403** -0.1840

(0.0621) (0.1311)

Farm Proprietors’ Income 0.0001 0.0001
(0.0001) (0.0002)

Farm Proprietors’ Employment -0.0204 -0.0029
(0.0534) (0.0660)

Wage and Salary Employment -0.0002 0.0055
(0.0005) (0.0066)

Wage and Salary -0.000004* 0.00002
(0.0000) (0.0001)

Proprietors’ Employment -0.0009 0.0074
(0.0010) (0.0146)

Proprietors’ Income 0.000001 -0.0002
(0.0000) (0.0001)

Annual Cattle Values 0.00000002 0.0000003
(0.0000) (0.0000)

Annual Alfalfa Hay Values 0.000001 0.000001
(0.0000) (0.0000)

Annual Vegetable Values 0.0000001*** 0.0000002
(0.0000) (0.0000)

Observations 1,555 195
R2 0.0713 0.2168
F Statistic 11.1777*** 3.9308***

Notes: Model 1 uses all available (50) control counties, where omitted counties include those
with missing observations and/or significant water transfer (due to other policy/agreements)
during the study period. Model 2 uses only control counties that receive nonzero weight in the
synthetic control analysis (see table E1). Both models control for county and year fixed effects.
Robust standard errors in parenthesis. *p<0.1; **p<0.05; ***p<0.01.
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Figure D3: Synthetic Control Analysis for Harvested Acres.
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Notes: Graphical summary of synthetic control output for Harvested Acres. Right panel shows the time path realized
by Imperial County and the synthetic Imperial County. Left panel shows the falsification test results of the estimated
treatment effect for Imperial County along with placebo effects for control units. Donor pool for Harvested Acres
consists of 29 control counties. See appendix C for the list of control variables included in the analysis. To refine
inferences from falsification tests, we consider control counties with pre-intervention RMSPEs that are less than or
equal to twice that of a treatment unit (Abadie et al., 2010). The vertical line represents the QSA effective year.

Figure D4: Event Study Analysis for Harvested Acres.
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Notes: Event study analysis for Harvested Acres. Right panel shows the estimated treatment effect for Imperial County
using all available (50) control counties, where omitted counties include those with missing observations and/or sig-
nificant water transfer (due to other policy/agreements) during the study period. Left panel shows the estimated
treatment effect for Imperial County using only control counties that receive nonzero weight in the synthetic control
analysis (see table E1). See appendix C for the list of control variables included in the analysis. Both models control
for county and year fixed effects. The confidence bounds are obtained using robust standard errors. The vertical line
represents the QSA effective year.
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Table D3: Difference-in-Differences Analysis for Harvested Acres.

(1) (2)
1(Imperial)×1(Post-intervention) -75.5588*** -101.5805***

(23.8476) (33.9260)

Farm Proprietors’ Income -0.0129 -0.0353
(0.0349) (0.0760)

Farm Proprietors’ Employment 12.2460 -40.9849***
(20.6599) (12.9161)

Wage and Salary Employment -0.0418 2.2353**
(0.0416) (1.0953)

Wage and Salary 0.0001 -0.0401*
(0.0002) (0.0206)

Proprietors’ Employment 0.0113 0.1774
(0.0777) (2.6029)

Proprietors’ Income -0.00005 0.0135
(0.0014) (0.0525)

Annual Cattle Values 0.0001 0.0002
(0.0002) (0.0001)

Annual Alfalfa Hay Values 0.0001 0.00001
(0.0002) (0.0002)

Annual Vegetable Values 0.00003* 0.0001***
(0.00002) (0.00002)

Observations 1,555 234
R2 0.0324 0.1947
F Statistic 4.8697*** 4.3512***

Notes: Harvested Acres is measured in thousands. Model 1 uses all available (50) control coun-
ties, where omitted counties include those with missing observations and/or significant water
transfer (due to other policy/agreements) during the study period. Model 2 uses only control
counties that receive nonzero weight in the synthetic control analysis (see table E1). Both mod-
els control for county and year fixed effects. Robust standard errors in parenthesis. *p<0.1;
**p<0.05; ***p<0.01.
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Figure D5: Harvested Acres by Crop Type in Imperial County.
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Notes: Top panel uses data from annual crop report compiled by the California County Agricultural Commissioners
(CCAC). Bottom panel shows event study analysis for Log Harvested Hay Alfalfa Acres using all available (51) control
counties, where omitted counties include those with missing observations and/or significant water transfer (due to
other policy/agreements) during the study period. See appendix C for the list of control variables included in the
analysis. The model controls for county and year fixed effects. The confidence bounds are obtained using robust
standard errors. The vertical line represents the QSA effective year.
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Table D4: Difference-in-Differences Analysis for Hay Alfalfa Acres.

(1) (2)
1(Imperial)×1(Post-intervention) −14.7916∗ −48.1613∗∗∗

(7.8049) (3.6182)

Farm Proprietors’ Income −0.0226∗∗∗ −0.0597∗∗∗

(0.0081) (0.0016)

Farm Proprietors’ Employment −1.1685 10.1109∗∗∗

(3.4083) (2.3190)

Wage and Salary Employment −0.0189 −0.7917∗∗∗

(0.0137) (0.0162)

Wage and Salary 0.0001 0.0228∗∗∗

(0.0001) (0.00003)

Proprietors’ Employment −0.0090 −5.0185∗∗∗

(0.0288) (0.1206)

Proprietors’ Income −0.0001 0.0024∗∗∗

(0.0005) (0.0002)

Annual Alfalfa Hay Values 0.0004∗∗∗ 0.0004∗∗∗

(0.0001) (0.00001)

Observations 1,834 78
R2 0.2117 0.7932
F Statistic 58.2751∗∗∗ 14.3866∗∗∗

Notes: Hay Alfalfa Acres is measured in thousands. Model 1 uses all available (51) control
counties, where omitted counties include those with missing observations and/or significant
water transfer (due to other policy/agreements) during the study period. Model 2 uses only
control counties that receive nonzero weight in the synthetic control analysis (see table E1).
Both models control for county and year fixed effects. Robust standard errors in parenthesis.
*p<0.1; **p<0.05; ***p<0.01.
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Figure D6: Synthetic Control Analysis for Per Capita Income.
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Notes: Graphical summary of synthetic control output for Per Capita Income. Right panel shows the time path realized
by Imperial County and the synthetic Imperial County. Left panel shows the falsification test results of the estimated
treatment effect for Imperial County along with placebo effects for control units. Donor pool for Per Capita Income
consists of 53 control counties. See appendix C for the list of control variables included in the analysis. To refine
inferences from falsification tests, we consider control counties with pre-intervention RMSPEs that are less than or
equal to twice that of a treatment unit (Abadie et al., 2010). The vertical line represents the QSA effective year.

Figure D7: Event Study Analysis for Per Capita Income.
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Notes: Event study analysis for Per Capita Income. Right panel shows the estimated treatment effect for Imperial
County using all available (53) control counties, where omitted counties include those with missing observations
and/or significant water transfer (due to other policy/agreements) during the study period. Left panel shows the
estimated treatment effect for Imperial County using only control counties that receive nonzero weight in the synthetic
control analysis (see table E1). See appendix C for the list of control variables included in the analysis. Both models
control for county and year fixed effects. The confidence bounds are obtained using robust standard errors. The vertical
line represents the QSA effective year.
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Table D5: Difference-in-Differences Analysis for Per Capita Income.

(1) (2)
1(Imperial)×1(Post-intervention) -5.9623*** 0.0483

(0.8793) (0.3862)

Farm Proprietors’ Income -0.003 -0.0011
(0.0022) (0.0016)

Farm Proprietors’ Employment 3.7007*** 0.9202***
(0.8948) (0.2182)

Wage and Salary Employment -0.0017 -0.0529***
(0.0074) (0.0202)

Wage and Salary 0.0005*** 0.0015***
(0.0001) (0.0002)

Proprietors’ Employment -0.1589*** 0.1701*
(0.0461) (0.1033)

Proprietors’ Income 0.0013* 0.0022**
(0.0007) (0.0011)

Observations 2,106 195
R2 0.3728 0.897
F Statistic 170.4042*** 180.4013***

Notes: Per Capita Income is measured in thousands. Model 1 uses all available (53) control
counties, where omitted counties include those with missing observations and/or significant
water transfer (due to other policy/agreements) during the study period. Model 2 uses only
control counties that receive nonzero weight in the synthetic control analysis (see table E1).
Both models control for county and year fixed effects. Robust standard errors in parenthesis.
*p<0.1; **p<0.05; ***p<0.01.
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Figure D8: Transfer Payments.

Source: QSA Annual Reports from Imperial Irrigation District digitized by the authors available at www.iid.com/
water/library/qsa-water-transfer/qsa-annual-reports.
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Figure D9: Synthetic Control Analysis for Crop High-Skill Labor Employment.
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Notes: Graphical summary of synthetic control output for Crop High-Skill Employment. Employment measure is for
the crop sector (NAICS=111). Right panel shows the time path realized by Imperial County and the synthetic Imperial
County. Left panel shows the falsification test results of the estimated treatment effect for Imperial County along with
placebo effects for control units. Donor pool for Crop High-Skill Employment consists of 29 control counties. See
appendix C for the list of control variables included in the analysis. To refine inferences from falsification tests, we
consider control counties with pre-intervention RMSPEs that are less than or equal to twice that of a treatment unit
(Abadie et al., 2010). The vertical line represents the QSA effective year.

Figure D10: Event Study Analysis for Crop High-Skill Labor Employment.
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Notes: Event study analysis for Crop High-Skill Labor Employment. Employment measure is for the crop sector
(NAICS=111). Right panel shows the estimated treatment effect for Imperial County using all available (47) control
counties, where omitted counties include those with missing observations and/or significant water transfer (due to
other policy/agreements) during the study period. Left panel shows the estimated treatment effect for Imperial County
using only control counties that receive nonzero weight in the synthetic control analysis (see table E1). See appendix C
for the list of control variables included in the analysis. Both models control for county and year fixed effects. The
confidence bounds are obtained using robust standard errors. The vertical line represents the QSA effective year.
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Table D6: Difference-in-Differences Analysis for Crop High-Skill Labor Employment.

(1) (2)
1(Imperial)×1(Post-intervention) -320.0928*** -67.9849

(119.5283) (56.4572)

Farm Proprietors’ Income 0.6911* 0.2257
(0.3871) (0.2664)

Farm Proprietors’ Employment 134.4385 101.3437**
(131.6754) (42.6406)

Wage and Salary Employment 1.9767** -20.6808***
(0.9502) (2.7785)

Wage and Salary -0.0058** 0.4844***
(0.0025) (0.1227)

Proprietors’ Employment -0.7314 50.1366***
(1.2684) (14.1521)

Proprietors’ Income -0.0055 -0.1041
(0.0193) (0.2022)

White Ag Labor Ratio -1,658.2800*** 1,776.1150
(576.6743) (1,392.5900)

Male Ag Labor Ratio -488.4528 -3,008.2560***
(522.5314) (1,015.9870)

Hispanic Ag Labor Ratio -216.5619 2,850.9250**
(502.1189) (1,300.1720)

High School or Higher Ag Labor Ratio 895.6604 2,471.6420
(990.6768) (2,160.7160)

Annual Cattle Values -0.0007 -0.0008*
(0.0008) (0.0004)

Annual Alfalfa Hay Values -0.0002 -0.0002
(0.0008) (0.0003)

Annual Vegetable Values 0.0009*** 0.0005***
(0.0003) (0.0001)

Observations 1,008 135
R2 0.4357 0.9344
F Statistic 50.7392*** 91.5996***

Notes: Employment measure is for the crop sector (NAICS=111). Model 1 uses all available
(47) control counties, where omitted counties include those with missing observations and/or
significant water transfer (due to other policy/agreements) during the study period. Model
2 uses only control counties that receive nonzero weight in the synthetic control analysis (see
table E1). Both models control for county and year fixed effects. Robust standard errors in
parenthesis. *p<0.1; **p<0.05; ***p<0.01.
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Figure D11: Synthetic Control Analysis for Crop Low-Skill Labor Employment.
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Notes: Graphical summary of synthetic control output for Crop Low-Skill Employment. Employment measure is for
the crop sector (NAICS=111). Right panel shows the time path realized by Imperial County and the synthetic Imperial
County. Left panel shows the falsification test results of the estimated treatment effect for Imperial County along with
placebo effects for control units. Donor pool for Crop Low-Skill Employment consists of 29 control counties. See
appendix C for the list of control variables included in the analysis. To refine inferences from falsification tests, we
consider control counties with pre-intervention RMSPEs that are less than or equal to twice that of a treatment unit
(Abadie et al., 2010). The vertical line represents the QSA effective year.

Figure D12: Event Study Analysis for Crop Low-Skill Labor Employment.
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Notes: Event study analysis for Crop Low-Skill Labor Employment. Employment measure is for the crop sector
(NAICS=111). Right panel shows the estimated treatment effect for Imperial County using all available (48) control
counties, where omitted counties include those with missing observations and/or significant water transfer (due to
other policy/agreements) during the study period. Left panel shows the estimated treatment effect for Imperial County
using only control counties that receive nonzero weight in the synthetic control analysis (see table E1). See appendix C
for the list of control variables included in the analysis. Both models control for county and year fixed effects. The
confidence bounds are obtained using robust standard errors. The vertical line represents the QSA effective year.
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Table D7: Difference-in-Differences Analysis for Crop Low-Skill Labor Employment.

(1) (2)
1(Imperial)×1(Post-intervention) -438.2687*** -283.5757

(139.5125) (284.9373)

Farm Proprietors’ Income 0.7666 -1.2171**
(0.5543) (0.4775)

Farm Proprietors’ Employment 663.2295*** 316.9246*
(215.0754) (176.6794)

Wage and Salary Employment 2.7993*** 7.8799
(0.9868) (13.7148)

Wage and Salary -0.0107*** -0.0112
(0.0023) (0.1929)

Proprietors’ Employment -0.4435 -138.8576***
(1.3554) (50.3148)

Proprietors’ Income -0.0225 0.5034
(0.0267) (0.3829)

White Ag Labor Ratio -1,125.7700* -2,812.7910
(619.8188) (6,668.7190)

Male Ag Labor Ratio -430.6889 -11,240.4400***
(583.9036) (4,266.9500)

Hispanic Ag Labor Ratio 426.8016 9,121.5260*
(686.8160) (4,689.3630)

High School or Higher Ag Labor Ratio 379.5046 6,653.9970
(1,124.4850) (7,907.4080)

Annual Cattle Values -0.0020** -0.0013
(0.0009) (0.0008)

Annual Alfalfa Hay Values 0.0006 0.0036***
(0.0020) (0.0014)

Annual Vegetable Values 0.0006* 0.0020***
(0.0004) (0.0004)

Observations 1,029 135
R2 0.4268 0.7533
F Statistic 49.9867*** 19.6349***

Notes: Employment measure is for the crop sector (NAICS=111). Model 1 uses all available
(48) control counties, where omitted counties include those with missing observations and/or
significant water transfer (due to other policy/agreements) during the study period. Model
2 uses only control counties that receive nonzero weight in the synthetic control analysis (see
table E1). Both models control for county and year fixed effects. Robust standard errors in
parenthesis. *p<0.1; **p<0.05; ***p<0.01.
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Figure D13: Synthetic Control Analysis for Ag High-Skill Labor Employment.
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Notes: Graphical summary of synthetic control output for Ag High-Skill Labor Employment. Employment measure is
for the ag sector (NAICS=11). Right panel shows the time path realized by Imperial County and the synthetic Imperial
County. Left panel shows the falsification test results of the estimated treatment effect for Imperial County along with
placebo effects for control units. Donor pool for Ag High-Skill Labor Employment consists of 30 control counties. See
appendix C for the list of control variables included in the analysis. To refine inferences from falsification tests, we
consider control counties with pre-intervention RMSPEs that are less than or equal to twice that of a treatment unit
(Abadie et al., 2010). The vertical line represents the QSA effective year.

Figure D14: Event Study Analysis for Ag High-Skill Labor Employment.
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Notes: Event study analysis for Ag High-Skill Labor Employment. Employment measure is for the ag sector
(NAICS=11). Right panel shows the estimated treatment effect for Imperial County using all available (48) control
counties, where omitted counties include those with missing observations and/or significant water transfer (due to
other policy/agreements) during the study period. Left panel shows the estimated treatment effect for Imperial County
using only control counties that receive nonzero weight in the synthetic control analysis (see table E1). See appendix C
for the list of control variables included in the analysis. The model controls for county and year fixed effects. The
confidence bounds are obtained using robust standard errors. The vertical line represents the QSA effective year.
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Table D8: Difference-in-Differences Analysis for Ag High-Skill Labor Employment.

(1) (2)
1(Imperial)×1(Post-intervention) -1,367.0360*** 86.9032

(391.3947) (93.7862)

Farm Proprietors’ Income 1.7902** 1.1420***
(0.8163) (0.0637)

Farm Proprietors’ Employment 149.8136 -692.1584***
(384.4494) (183.9810)

Wage and Salary Employment 3.4769 14.4508
(2.2658) (10.0252)

Wage and Salary -0.0107** -0.0291
(0.0052) (0.1491)

Proprietors’ Employment -5.3897* 49.7737*
(3.0171) (26.4864)

Proprietors’ Income 0.0076 -0.8106***
(0.0389) (0.1285)

White Ag Labor Ratio -2,303.4760** -9,837.8240**
(1,013.6630) (4,380.8940)

Male Ag Labor Ratio -656.3264 -3,452.4110***
(930.0653) (939.5769)

Hispanic Ag Labor Ratio -979.6626 7,358.6510***
(873.4222) (2,314.2420)

High School or Higher Ag Labor Ratio 2,023.6130 9,280.2650**
(1,396.6070) (4,204.5420)

Annual Cattle Values 0.0028* -0.0011***
(0.0017) (0.0003)

Annual Alfalfa Hay Values -0.0018 0.0001
(0.0019) (0.0007)

Annual Vegetable Values 0.0023*** 0.0003*
(0.0008) (0.0002)

Observations 1,050 108
R2 0.5986 0.9076
F Statistic 102.3863*** 44.9236***

Notes: Employment measure is for the ag sector (NAICS=11). Model 1 uses all available (48)
control counties, where omitted counties include those with missing observations and/or sig-
nificant water transfer (due to other policy/agreements) during the study period. Model 2 uses
only control counties that receive nonzero weight in the synthetic control analysis (see table E1).
Both models control for county and year fixed effects. Robust standard errors in parenthesis.
*p<0.1; **p<0.05; ***p<0.01.
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Figure D15: Synthetic Control Analysis for Ag Low-Skill Labor Employment.
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Notes: Graphical summary of synthetic control output for Ag Low-Skill Labor Employment. Employment measure is
for the ag sector (NAICS=11). Right panel shows the time path realized by Imperial County and the synthetic Imperial
County. Left panel shows the falsification test results of the estimated treatment effect for Imperial County along with
placebo effects for control units. Donor pool for Ag Low-Skill Labor Employment consists of 30 control counties. See
appendix C for the list of control variables included in the analysis. To refine inferences from falsification tests, we
consider control counties with pre-intervention RMSPEs that are less than or equal to twice that of a treatment unit
(Abadie et al., 2010). The vertical line represents the QSA effective year.

Figure D16: Event Study Analysis for Ag Low-Skill Labor Employment.
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Notes: Event study analysis for Ag Low-Skill Labor Employment. Employment measure is for the ag sector
(NAICS=11). Right panel shows the estimated treatment effect for Imperial County using all available (48) control
counties, where omitted counties include those with missing observations and/or significant water transfer (due to
other policy/agreements) during the study period. Left panel shows the estimated treatment effect for Imperial County
using only control counties that receive nonzero weight in the synthetic control analysis (see table E1). See appendix C
for the list of control variables included in the analysis. Both models control for county and year fixed effects. The
confidence bounds are obtained using robust standard errors. The vertical line represents the QSA effective year.
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Table D9: Difference-in-Differences Analysis for Ag Low-Skill Labor Employment.

(1) (2)
1(Imperial)×1(Post-intervention) -2,323.6270*** -769.1221***

(361.6651) (185.9512)

Farm Proprietors’ Income 2.2219** 1.6630***
(0.9720) (0.5251)

Farm Proprietors’ Employment 876.8601 238.4546
(551.9801) (152.5152)

Wage and Salary Employment 4.1706 47.7105***
(2.7683) (12.5571)

Wage and Salary -0.0149** -1.1076***
(0.0062) (0.1641)

Proprietors’ Employment -7.0656* 282.3479***
(3.6523) (19.2937)

Proprietors’ Income 0.0055 -0.5685
(0.0485) (0.4475)

White Ag Labor Ratio -1,597.3660 -33,550.5000***
(1,127.8540) (3,360.5480)

Male Ag Labor Ratio -1,470.3720 -10,910.6400*
(974.4953) (5,763.6920)

Hispanic Ag Labor Ratio -29.5041 22,865.2700***
(981.3061) (3,628.1840)

High School or Higher Ag Labor Ratio 2,262.3560 15,344.5700***
(1,825.9140) (5,393.1060)

Annual Cattle Values 0.0023 -0.0015
(0.0020) (0.0011)

Annual Alfalfa Hay Values -0.0012 0.0008
(0.0028) (0.0005)

Annual Vegetable Values 0.0021* -0.0010**
(0.0011) (0.0004)

Observations 1,049 108
R2 0.4487 0.8421
F Statistic 55.8084*** 24.3877***

Notes: Employment measure is for the ag sector (NAICS=11). Model 1 uses all available (48)
control counties, where omitted counties include those with missing observations and/or sig-
nificant water transfer (due to other policy/agreements) during the study period. Model 2 uses
only control counties that receive nonzero weight in the synthetic control analysis (see table E1).
Both models control for county and year fixed effects. Robust standard errors in parenthesis.
*p<0.1; **p<0.05; ***p<0.01.
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Figure D17: Synthetic Control Analysis for Crop High-Skill Earnings/Crop Low-Skill Earnings.
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Notes: Graphical summary of synthetic control output for Crop High-Skill Earnings/Crop Low-Skill Earnings. Right
panel shows the time path realized by Imperial County and the synthetic Imperial County. Left panel shows the
falsification test results of the estimated treatment effect for Imperial County along with placebo effects for control units.
Donor pool for Crop High-Skill Earnings/Crop Low-Skill Earnings consists of 45 control counties. See appendix C for
the list of control variables included in the analysis. To refine inferences from falsification tests, we consider control
counties with pre-intervention RMSPEs that are less than or equal to twice that of a treatment unit (Abadie et al., 2010).
The vertical line represents the QSA effective year.

Figure D18: Event Study Analysis for Crop High-Skill Earnings/Crop Low-Skill Earnings.
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Notes: Event study analysis for Crop High-Skill Earnings/Crop Low-Skill Earnings. Right panel shows the estimated
treatment effect for Imperial County using all available (52) control counties, where omitted counties include those
with missing observations and/or significant water transfer (due to other policy/agreements) during the study period.
Left panel shows the estimated treatment effect for Imperial County using only control counties that receive nonzero
weight in the synthetic control analysis (see table E1). See appendix C for the list of control variables included in the
analysis. Both models control for county and year fixed effects. The confidence bounds are obtained using robust
standard errors. The vertical line represents the QSA effective year.
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Table D10: Difference-in-Differences Analysis for Crop High-Skill Earnings/Crop Low-Skill Earn-
ings.

(1) (2)
1(Imperial)×1(Post-intervention) 0.0468* 0.1057

(0.0240) (0.0829)

Farm Proprietors’ Income -0.00002 -0.0002
(0.00005) (0.0002)

Farm Proprietors’ Employment -0.0029 -0.4684**
(0.0200) (0.1904)

Wage and Salary Employment -0.0004 0.0065
(0.0003) (0.0049)

Wage and Salary 0.000002 -0.0001
(0.000002) (0.0001)

Proprietors’ Employment -0.0008* 0.0002
(0.0004) (0.0182)

Proprietors’ Income 0.000003 0.0001**
(0.000004) (0.0001)

Observations 1,350 135
R2 0.0205 0.2514
F Statistic 3.7791*** 4.6539***

Notes: Model 1 uses all available (52) control counties, where omitted counties include those
with missing observations and/or significant water transfer (due to other policy/agreements)
during the study period. Model 2 uses only control counties that receive nonzero weight in the
synthetic control analysis (see table E1). Both models control for county and year fixed effects.
Robust standard errors in parenthesis. *p<0.1; **p<0.05; ***p<0.01.
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Figure D19: Synthetic Control Analysis for PM10 Days.
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Notes: Graphical summary of synthetic control output for PM10 Days. Right panel shows the time path realized by
Imperial County and the synthetic Imperial County. Left panel shows the falsification test results of the estimated
treatment effect for Imperial County along with placebo effects for control units. Donor pool for PM10 Days consists of
35 control counties. See appendix C for the list of control variables included in the analysis. To refine inferences from
falsification tests, we consider control counties with pre-intervention RMSPEs that are less than or equal to twice that
of a treatment unit (Abadie et al., 2010). The vertical line represents the QSA effective year.

Figure D20: Event Study Analysis for PM10 Days (Fixed Effects Poisson Regression).

−
4

−
2

0
2

4

Year

E
s
ti
m

a
te

d
 t

re
a

tm
e

n
t 

e
ff
e

c
t 

(P
M

1
0

 D
a
y
s
)

1990 1995 2000 2005 2010 2015

Point estimate
95% confidence interval

−
4

−
2

0
2

4

Year

E
s
ti
m

a
te

d
 t

re
a

tm
e

n
t 

e
ff
e

c
t 

(P
M

1
0

 D
a
y
s
)

1990 1995 2000 2005 2010 2015

Point estimate
95% confidence interval

Notes: Event study analysis for PM10 Days using a fixed effects Poisson regression. Right panel shows the estimated
treatment effect for Imperial County using all available (53) control counties, where omitted counties include those
with missing observations and/or significant water transfer (due to other policy/agreements) during the study period.
Left panel shows the estimated treatment effect for Imperial County using only control counties that receive nonzero
weight in the synthetic control analysis (see table E1). See appendix C for the list of control variables included in the
analysis. Both models control for county and year fixed effects. The confidence bounds are obtained using robust
standard errors. The vertical line represents the QSA effective year.
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Table D11: Difference-in-Differences Analysis for PM10 Days (Fixed Effects Poisson Regression).

(1) (2)
1(Imperial)×1(Post-intervention) 0.6971*** 0.9463

(0.0000) (2.3664)

Days with AQI 0.0003 0.0012
(0.0013) (0.0060)

Median AQI -0.0437*** -0.0502*
(0.0135) (0.0243)

Farm Proprietors’ Income 0.0014*** 0.0021
(0.0004) (0.0073)

Farm Proprietors’ Employment 0.7180*** 0.6606
(0.0000) (0.9997)

Wage and Salary Employment 0.0011 0.0174
(0.0018) (0.5060)

Wage and Salary 0.0000 0.0004
(0.0000) (0.0057)

Proprietors’ Employment 0.0121** -0.0515
(0.0053) (0.2799)

Proprietors’ Income -0.0002** -0.0021
(0.0001) (0.0037)

Observations 1,876 264
Log-likelihood -10,807.38 -3,095.025

Notes: Model 1 uses all available (53) control counties, where omitted counties include those
with missing observations and/or significant water transfer (due to other policy/agreements)
during the study period. Model 2 uses only control counties that receive nonzero weight in the
synthetic control analysis (see table E1). Both models control for county and year fixed effects.
Robust standard errors in parenthesis. *p<0.1; **p<0.05; ***p<0.01.

74



Figure D21: Synthetic Control Analysis for PM2.5 Days.
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Notes: Graphical summary of synthetic control output for PM2.5 Days. Right panel shows the time path realized by
Imperial County and the synthetic Imperial County. Left panel shows the falsification test results of the estimated
treatment effect for Imperial County along with placebo effects for control units. Donor pool for PM2.5 Days consists
of 49 control counties. See appendix C for the list of control variables included in the analysis. To refine inferences from
falsification tests, we consider control counties with pre-intervention RMSPEs that are less than or equal to twice that
of a treatment unit (Abadie et al., 2010). The vertical line represents the QSA effective year.

Figure D22: Event Study Analysis for PM2.5 Days (Fixed Effects Poisson Regression).
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Notes: Event study analysis for PM2.5 Days using a fixed effects Poisson regression. Right panel shows the estimated
treatment effect for Imperial County using all available (53) control counties, where omitted counties include those
with missing observations and/or significant water transfer (due to other policy/agreements) during the study period.
Left panel shows the estimated treatment effect for Imperial County using only control counties that receive nonzero
weight in the synthetic control analysis (see table E1). See appendix C for the list of control variables included in the
analysis. Both models control for county and year fixed effects. The confidence bounds are obtained using robust
standard errors. The vertical line represents the QSA effective year.
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Table D12: Difference-in-Differences Analysis for PM2.5 Days (Fixed Effects Poisson Regression).

(1) (2)
1(Imperial)×1(Post-intervention) 1.0241*** 0.9757***

(0.0000) (0.0002)

Days with AQI 0.0017*** -0.0764***
(0.0006) (0.0006)

Median AQI 0.0438*** 0.0183*
(0.0065) (0.0101)

Farm Proprietors’ Income 0.0004* -0.0003
(0.0003) (0.0012)

Farm Proprietors’ Employment -0.9694*** -0.0570***
(0.0000) (0.0020)

Wage and Salary Employment -0.0020*** -0.0199
(0.0006) (0.0290)

Wage and Salary 0.0000*** 0.0003
(0.0000) (0.0005)

Proprietors’ Employment 0.0009 -0.0067
(0.0008) (0.0481)

Proprietors’ Income 0.0000 0.0004
(0.0000) (0.0005)

Observations 1,069 105
Log-likelihood -16,410.72 -900.2285

Notes: Model 1 uses all available (53) control counties, where omitted counties include those
with missing observations and/or significant water transfer (due to other policy/agreements)
during the study period. Model 2 uses only control counties that receive nonzero weight in the
synthetic control analysis (see table E1). Both models control for county and year fixed effects.
Robust standard errors in parenthesis. *p<0.1; **p<0.05; ***p<0.01.
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Figure D23: Synthetic Control Analysis for Ozone Days.
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Notes: Graphical summary of synthetic control output for Ozone Days. Right panel shows the time path realized by
Imperial County and the synthetic Imperial County. Left panel shows the falsification test results of the estimated
treatment effect for Imperial County along with placebo effects for control units. Donor pool for Ozone Days consists
of 48 control counties. See appendix C for the list of control variables included in the analysis. To refine inferences from
falsification tests, we consider control counties with pre-intervention RMSPEs that are less than or equal to twice that
of a treatment unit (Abadie et al., 2010). The vertical line represents the QSA effective year.

Figure D24: Event Study Analysis for Ozone Days (Fixed Effects Poisson Regression).
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Notes: Event study analysis for Ozone Days using a fixed effects Poisson regression. Right panel shows the estimated
treatment effect for Imperial County using all available (53) control counties, where omitted counties include those
with missing observations and/or significant water transfer (due to other policy/agreements) during the study period.
Left panel shows the estimated treatment effect for Imperial County using only control counties that receive nonzero
weight in the synthetic control analysis (see table E1). See appendix C for the list of control variables included in the
analysis. Both models control for county and year fixed effects. The confidence bounds are obtained using robust
standard errors. The vertical line represents the QSA effective year.
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Table D13: Difference-in-Differences Analysis for Ozone Days (Fixed Effects Poisson Regression).

(1) (2)
1(Imperial)×1(Post-intervention) -0.1497*** 0.1023***

(0.0000) (0.0047)

Days with AQI 0.0083*** 0.0150
(0.0019) (0.0602)

Median AQI -0.0020 0.0183*
(0.0034) (0.0103)

Farm Proprietors’ Income -0.0002** 0.0003
(0.0001) (0.0023)

Farm Proprietors’ Employment 0.0717*** 0.3530***
(0.0000) (0.0006)

Wage and Salary Employment 0.0002 -0.0068
(0.0002) (0.1151)

Wage and Salary 0.0000 0.0000
(0.0000) (0.0016)

Proprietors’ Employment -0.0004 0.0383
(0.0004) (0.2193)

Proprietors’ Income 0.0000* -0.0002
(0.0000) (0.0010)

Observations 1,276 150
Log-likelihood -12,753.68 -3,048.978

Notes: Model 1 uses all available (53) control counties, where omitted counties include those
with missing observations and/or significant water transfer (due to other policy/agreements)
during the study period. Model 2 uses only control counties that receive nonzero weight in the
synthetic control analysis (see table E1). Both models control for county and year fixed effects.
Robust standard errors in parenthesis. *p<0.1; **p<0.05; ***p<0.01.
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Figure D25: Synthetic Control Analysis for NO2 Days.
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Notes: Graphical summary of synthetic control output for NO2 Days. Right panel shows the time path realized by
Imperial County and the synthetic Imperial County. Left panel shows the falsification test results of the estimated
treatment effect for Imperial County along with placebo effects for control units. Donor pool for NO2 Days consists of
48 control counties. See appendix C for the list of control variables included in the analysis. To refine inferences from
falsification tests, we consider control counties with pre-intervention RMSPEs that are less than or equal to twice that
of a treatment unit (Abadie et al., 2010). The vertical line represents the QSA effective year.

Figure D26: Event Study Analysis for NO2 Days (Fixed Effects Poisson Regression).
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Notes: Event study analysis for NO2 Days using a fixed effects Poisson regression. Right panel shows the estimated
treatment effect for Imperial County using all available (53) control counties, where omitted counties include those
with missing observations and/or significant water transfer (due to other policy/agreements) during the study period.
Left panel shows the estimated treatment effect for Imperial County using only control counties that receive nonzero
weight in the synthetic control analysis (see table E1). See appendix C for the list of control variables included in the
analysis. Both models control for county and year fixed effects. The confidence bounds are obtained using robust
standard errors. The vertical line represents the QSA effective year.
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Table D14: Difference-in-Differences Analysis for NO2 Days (Fixed Effects Poisson Regression).

(1) (2)
1(Imperial)×1(Post-intervention) -0.1027*** -0.1221

(0.0000) (0.1345)

Days with AQI 0.0057*** -0.0782
(0.0021) (8.6883)

Median AQI -0.0548*** -0.0580
(0.0117) (0.1632)

Farm Proprietors’ Income -0.0024*** -0.0011
(0.0006) (0.0032)

Farm Proprietors’ Employment 0.9390*** 1.6944***
(0.0001) (0.0648)

Wage and Salary Employment 0.0007 0.0116
(0.0013) (0.1369)

Wage and Salary 0.0000*** 0.0000
(0.0000) (0.0034)

Proprietors’ Employment -0.0001 -0.0417
(0.0043) (0.4127)

Proprietors’ Income 0.0000 -0.0002
(0.0000) (0.0016)

Observations 1,276 100
Log-likelihood -8,639.586 -612.4266

Notes: Model 1 uses all available (53) control counties, where omitted counties include those
with missing observations and/or significant water transfer (due to other policy/agreements)
during the study period. Model 2 uses only control counties that receive nonzero weight in the
synthetic control analysis (see table E1). Both models control for county and year fixed effects.
Robust standard errors in parenthesis. *p<0.1; **p<0.05; ***p<0.01.
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Figure D27: Synthetic Control Analysis for PM10 Annual Mean (µg/m3).
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Notes: Graphical summary of synthetic control output for PM10 Annual Mean. Right panel shows the time path
realized by Imperial County and the synthetic Imperial County. Left panel shows the falsification test results of the
estimated treatment effect for Imperial County along with placebo effects for control units. Donor pool for PM10
Annual Mean consists of 12 control counties. See appendix C for the list of control variables included in the analysis.
To refine inferences from falsification tests, we consider control counties with pre-intervention RMSPEs that are less
than or equal to twice that of a treatment unit (Abadie et al., 2010). The vertical line represents the QSA effective year.

Figure D28: Event Study Analysis for PM10 Annual Mean (µg/m3).
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Notes: Event study analysis for PM10 Annual Mean (µg/m3). Right panel shows the estimated treatment effect for
Imperial County using all available (49) control counties, where omitted counties include those with missing observa-
tions and/or significant water transfer (due to other policy/agreements) during the study period. Left panel shows the
estimated treatment effect for Imperial County using only control counties that receive nonzero weight in the synthetic
control analysis (see table E1). See appendix C for the list of control variables included in the analysis. Both models
control for county and year fixed effects. The confidence bounds are obtained using robust standard errors. The vertical
line represents the QSA effective year.
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Table D15: Difference-in-Differences Analysis for PM10 Annual Mean (µg/m3).

(1) (2)
1(Imperial)×1(Post-intervention) -7.4623*** 39.8011

(1.8371) (24.3608)

Days with AQI 0.0226 -0.0161
(0.0204) (0.0462)

Median AQI 0.0339 0.7414***
(0.1210) (0.1888)

Farm Proprietors’ Income 0.0016 0.0631***
(0.0039) (0.0131)

Farm Proprietors’ Employment 2.1874** 146.4164**
(0.9877) (65.8332)

Wage and Salary Employment -0.0082 0.3374
(0.0106) (0.4400)

Wage and Salary -0.00002 -0.0078
(0.00005) (0.0062)

Proprietors’ Employment 0.0050 2.3607**
(0.0244) (0.9612)

Proprietors’ Income -0.0001 -0.0124
(0.0003) (0.0084)

Observations 1,160 87
R2 0.0345 0.5099
F Statistic 4.2665*** 5.4335***

Notes: Model 1 uses all available (49) control counties, where omitted counties include those
with missing observations and/or significant water transfer (due to other policy/agreements)
during the study period. Model 2 uses only control counties that receive nonzero weight in the
synthetic control analysis (see table E1). Both models control for county and year fixed effects.
Robust standard errors in parenthesis. *p<0.1; **p<0.05; ***p<0.01.
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Figure D29: Synthetic Control Analysis for PM2.5 Annual Mean (µg/m3).
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Notes: Graphical summary of synthetic control output for PM2.5 Annual Mean. Right panel shows the time path
realized by Imperial County and the synthetic Imperial County. Left panel shows the falsification test results of the
estimated treatment effect for Imperial County along with placebo effects for control units. Donor pool for PM2.5
Annual Mean consists of 13 control counties. See appendix C for the list of control variables included in the analysis.
To refine inferences from falsification tests, we consider control counties with pre-intervention RMSPEs that are less
than or equal to twice that of a treatment unit (Abadie et al., 2010). The vertical line represents the QSA effective year.

Figure D30: Event Study Analysis for PM2.5 Annual Mean (µg/m3).
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Notes: Event study analysis for PM2.5 Annual Mean (µg/m3). Right panel shows the estimated treatment effect for
Imperial County using all available (42) control counties, where omitted counties include those with missing observa-
tions and/or significant water transfer (due to other policy/agreements) during the study period. Left panel shows the
estimated treatment effect for Imperial County using only control counties that receive nonzero weight in the synthetic
control analysis (see table E1). See appendix C for the list of control variables included in the analysis. Both models
control for county and year fixed effects. The confidence bounds are obtained using robust standard errors. The vertical
line represents the QSA effective year.
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Table D16: Difference-in-Differences Analysis for PM2.5 Annual Mean (µg/m3).

(1) (2)
1(Imperial)×1(Post-intervention) 1.9111*** 1.7372**

(0.2943) (0.6775)

Days with AQI -0.0018 -1.9016*
(0.0033) (1.0018)

Median AQI 0.0829*** 0.1100***
(0.0196) (0.0272)

Farm Proprietors’ Income 0.0001 -0.0009
(0.0005) (0.0006)

Farm Proprietors’ Employment 1.3591*** -0.1805
(0.4423) (0.5174)

Wage and Salary Employment 0.0045* 0.0193
(0.0024) (0.0131)

Wage and Salary -0.00001 -0.0001*
(0.00001) (0.00003)

Proprietors’ Employment -0.0151* 0.0044
(0.0084) (0.0152)

Proprietors’ Income 0.0001 -0.00002
(0.0001) (0.0002)

Observations 612 204
R2 0.1900 0.2028
F Statistic 14.1772*** 4.7194***

Notes: Model 1 uses all available (42) control counties, where omitted counties include those
with missing observations and/or significant water transfer (due to other policy/agreements)
during the study period. Model 2 uses only control counties that receive nonzero weight in the
synthetic control analysis (see table E1). Both models control for county and year fixed effects.
Robust standard errors in parenthesis. *p<0.1; **p<0.05; ***p<0.01.
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Figure D31: Synthetic Control Analysis for Satellite-Based PM2.5 Mean (µg/m3).
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Notes: Graphical summary of synthetic control output for Satellite-Based PM2.5 Mean. Right panel shows the time
path realized by Imperial County and the synthetic Imperial County. Left panel shows the falsification test results of
the estimated treatment effect for Imperial County along with placebo effects for control units. Donor pool for Satellite-
Based PM2.5 Mean consists of 49 control counties. See appendix C for the list of control variables included in the
analysis. To refine inferences from falsification tests, we consider control counties with pre-intervention RMSPEs that
are less than or equal to twice that of a treatment unit (Abadie et al., 2010). The vertical line represents the QSA effective
year.

Figure D32: Event Study Analysis for Satellite-Based PM2.5 Mean (µg/m3).
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Notes: Event study analysis for Satellite-Based PM2.5 Mean (µg/m3). Right panel shows the estimated treatment
effect for Imperial County using all available (53) control counties, where omitted counties include those with missing
observations and/or significant water transfer (due to other policy/agreements) during the study period. Left panel
shows the estimated treatment effect for Imperial County using only control counties that receive nonzero weight in the
synthetic control analysis (see table E1). See appendix C for the list of control variables included in the analysis. Both
models control for county and year fixed effects. The confidence bounds are obtained using robust standard errors. The
vertical line represents the QSA effective year.
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Table D17: Difference-in-Differences Analysis for Satellite-Based PM2.5 Mean (µg/m3).

(1) (2)
1(Imperial)×1(Post-intervention) -0.8762*** -0.3355

(0.1480) (0.4419)

Days with AQI -0.0001 -0.0192
(0.0012) (0.0496)

Median AQI 0.0122** 0.0372***
(0.0055) (0.0134)

Farm Proprietors’ Income 0.0002 0.0017
(0.0003) (0.0015)

Farm Proprietors’ Employment 0.4653 3.5003
(0.3449) (2.9764)

Wage and Salary Employment -0.0002 0.0020
(0.0008) (0.0031)

Wage and Salary -0.00001 0.00004
(0.00001) (0.00003)

Proprietors’ Employment -0.0079** -0.0271***
(0.0034) (0.0037)

Proprietors’ Income 0.0001** -0.0001
(0.00004) (0.0001)

Observations 963 133
R2 0.0722 0.3539
F Statistic 7.6213*** 6.0245***

Notes: Model 1 uses all available (53) control counties, where omitted counties include those
with missing observations and/or significant water transfer (due to other policy/agreements)
during the study period. Model 2 uses only control counties that receive nonzero weight in the
synthetic control analysis (see table E1). Both models control for county and year fixed effects.
Robust standard errors in parenthesis. *p<0.1; **p<0.05; ***p<0.01.

86



Figure D33: Synthetic Control Analysis for Satellite-Based PM2.5 Max (µg/m3).
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Notes: Graphical summary of synthetic control output for Satellite-Based PM2.5 Max. Right panel shows the time
path realized by Imperial County and the synthetic Imperial County. Left panel shows the falsification test results
of the estimated treatment effect for Imperial County along with placebo effects for control units. Donor pool for
Satellite-Based PM2.5 Max consists of 49 control counties. See appendix C for the list of control variables included in
the analysis. To refine inferences from falsification tests, we consider control counties with pre-intervention RMSPEs
that are less than or equal to twice that of a treatment unit (Abadie et al., 2010). The vertical line represents the QSA
effective year.

Figure D34: Event Study Analysis for Satellite-Based PM2.5 Max (µg/m3).
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Notes: Event study analysis for Satellite-Based PM2.5 Max (µg/m3). Right panel shows the estimated treatment ef-
fect for Imperial County using all available (53) control counties, where omitted counties include those with missing
observations and/or significant water transfer (due to other policy/agreements) during the study period. Left panel
shows the estimated treatment effect for Imperial County using only control counties that receive nonzero weight in the
synthetic control analysis (see table E1). See appendix C for the list of control variables included in the analysis. Both
models control for county and year fixed effects. The confidence bounds are obtained using robust standard errors. The
vertical line represents the QSA effective year.
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Table D18: Difference-in-Differences Analysis for Satellite-Based PM2.5 Max (µg/m3).

(1) (2)
1(Imperial)×1(Post-intervention) 0.1239 -0.0389

(0.2454) (0.5511)

Days with AQI 0.0012 -0.0027*
(0.0021) (0.0015)

Median AQI 0.0266** 0.0433**
(0.0109) (0.0217)

Farm Proprietors’ Income -0.0009 -0.0005
(0.0006) (0.0027)

Farm Proprietors’ Employment 0.9954** 0.1423
(0.4628) (0.8242)

Wage and Salary Employment -0.0003 -0.0005
(0.0053) (0.0070)

Wage and Salary -0.000001 -0.00001
(0.00003) (0.00005)

Proprietors’ Employment -0.0211*** -0.0196**
(0.0061) (0.0094)

Proprietors’ Income 0.0002*** 0.0002**
(0.0001) (0.0001)

Observations 963 437
R2 0.1574 0.1955
F Statistic 18.3090*** 10.4478***

Notes: Model 1 uses all available (53) control counties, where omitted counties include those
with missing observations and/or significant water transfer (due to other policy/agreements)
during the study period. Model 2 uses only control counties that receive nonzero weight in the
synthetic control analysis (see table E1). Both models control for county and year fixed effects.
Robust standard errors in parenthesis. *p<0.1; **p<0.05; ***p<0.01.
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E Additional Results for Synthetic Control Analysis

Table E1: Donor County Weights for Each Outcome Variable Analysis.

Donor Weight Donor Weight
Log Harvested Acres NO2 Days
Tulare 0.780 Inyo 0.640
Siskiyou 0.109 San Bernardino 0.301
Monterey 0.104 Marin 0.058
Kings 0.006

Ozone Days
Harvested Acres Inyo 0.542
Kern 0.346 Kern 0.156
Siskiyou 0.224 Monterey 0.116
Tulare 0.197 Del Norte 0.114
Monterey 0.142 Mono 0.072
Kings 0.091

PM10 Annual Mean
Per Capita Income San Bernardino 0.645
Tulare 0.405 Inyo 0.354
Merced 0.342
Kings 0.190 PM2.5 Annual Mean
Monterey 0.064 Solano 0.841

Alameda 0.022
Crop High Skill Labor Employment Kern 0.021
Lassen 0.542 Kings 0.020
Merced 0.222 Sacramento 0.019
Kings 0.124 Ventura 0.019
Monterey 0.112 Contra Costa 0.017

Santa Clara 0.016
Crop Low Skill Labor Employment San Luis Obispo 0.014
Colusa 0.705 Fresno 0.009
Monterey 0.191 Placer 0.001
Merced 0.078
Tulare 0.026 Satellite-Based PM2.5 Mean

Mariposa 0.545
Ag High Skill Labor Employment Inyo 0.207
Kings 0.516 Kings 0.185
Merced 0.270 Kern 0.045
Colusa 0.215 Orange 0.016

San Francisco 0.002
Ag Low Skill Labor Employment
Kings 0.530 Satellite-Based PM2.5 Max
Merced 0.324 Colusa 0.318
Fresno 0.146 San Diego 0.313

Plumas 0.179
Crop High-Skill Earn/Crop Low-Skill Earn San Bernardino 0.167
Yolo 0.463 Butte 0.001
Monterey 0.316 Calaveras 0.001
Del Norte 0.127 Del Norte 0.001
San Benito 0.094 Glenn 0.001

Lake 0.001
PM10 Days Los Angeles 0.001
Mendocino 0.314 Mariposa 0.001
Glenn 0.259 Nevada 0.001
Butte 0.234 San Francisco 0.001
Colusa 0.116 San Luis Obispo 0.001
Mono 0.040 San Mateo 0.001
Kern 0.028 Santa Barbara 0.001
Kings 0.007 Siskiyou 0.001

Sonoma 0.001
PM2.5 Days Sutter 0.001
Inyo 0.662 Tehama 0.001
Fresno 0.220 Trinity 0.001
Monterey 0.057 Yolo 0.001
San Bernardino 0.057

Notes: County weights are obtained by performing synthetic control analysis separately for each outcome variable of interest.
Reported counties are those that receive nonzero weights in the analysis.
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E.1 The RMSPE test

An alternative technique to evaluate the statistical significance of the measured treatment effect
is by the ratio of the post-intervention root mean square prediction error (RMSPE) to the pre-
intervention RMSPE (Abadie et al., 2010; Abadie, 2021). Given that the control units are not ex-
posed to treatment, the post-intervention RMSPE (i.e., the square root of average discrepancy be-
tween actual and synthetic outcomes for the post-intervention period) for control units should, in
theory, be similar to the pre-intervention RMSPE (i.e., the square root of average discrepancy be-
tween actual and synthetic outcomes for the pre-intervention period), thus producing a relatively
small ratio. On the other hand, for the treatment unit, the difference between actual and synthetic
outcomes will be more pronounced during the post-intervention period if a treatment effect is
truly present, thus producing a larger post-intervention RMSPE and, in turn, a larger overall ratio.
As such, the estimated treatment effect for the treatment county (δ̂1t, for t > T0) is considered
statistically significant if the treatment county has one of the few large post/pre RMSPE ratios.
In particular, a treatment unit with a significant treatment effect would appear at or near the top
when all post/pre RMSPE ratios were listed in descending order.

The disadvantage of RMSPE test is that it does not distinguish between positive and negative
deviations in the post-intervention period when ranking post/pre RMSPE ratios of the treatment
and placebo units. So, for instance, a treatment unit may present a large negative effect in the post-
intervention period (i.e., placebo units do not produce similar negative effect), but such effect may
not necessarily be found to be significant according to RMSPE test (i.e., post-pre RMSPE ratio of
the treatment unit may not appear at or near the top of the ranking) if there are placebo counties
that produce large (cumulative) positive effect in the post-intervention period. Hence, a caution
should be exercised when interpreting RMSPE test results. The RMSPE test results corresponding
to our analysis are reported in table E2.
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Table E2: RMSPE Tests.

Outcome Variable Post/Pre Max / Min Treatment Unit Rank /
RMSPE Ratio # of All Valid Units

Log Harvested Acres 4.30 4.30 / 2.27 1 / 7
Harvested Acres 3.79 4.01 / 0.48 3 / 22
Per Capita Income 2.05 19.08 / 1.19 40 / 45
Crop High Skill Labor Employment 2.92 40.80 / 1.23 24 / 27
Crop Low Skill Labor Employment 1.56 11.28 / 0.52 18 / 26
Ag High Skill Labor Employment 4.57 19.46 / 1.02 7 /23
Ag Low Skill Labor Employment 2.73 10.95 / 0.42 10 / 28
Crop High-Skill Earn/Crop Low-Skill Earn 5.72 5.72 / 0.87 1 / 15
PM10 Days 5.06 10.91 / 0.64 8 / 33
PM2.5 Days 6.49 1,786.54 / 2.69 25 / 32
Ozone Days 2.37 13.44 / 0.61 26 / 39
NO2 Days 1.58 64,478,918.91 / 0.17 13 / 46
PM10 Annual Mean 1.15 0.83 / 4.70 11 / 12
PM2.5 Annual Mean 4.25 96,621.55 / 2.24 7 / 9
Satellite-Based PM2.5 Mean 6.43 44.81 / 0.88 9 / 32
Satellite-Based PM2.5 Max 95.53 2,734,941.00 / 15.72 29 / 31

Notes: Post/Pre RMSPE ratio indicates the ratio of the post-intervention RMSPE to the pre-intervention RMSPE
for the treatment unit. Max/Min indicates the maximum/minimum ratio of the post-intervention RMSPE to
the pre-intervention RMSPE from among treatment and control units. Treatment unit rank is the rank of the
ratio of the post-intervention RMSPE to the pre-intervention RMSPE for the treatment unit when all the ratios
(both for treatment and control units) are ordered in descending order. To refine inferences from falsification
tests, we consider control counties with pre-intervention RMSPEs that are less than or equal to twice that of a
treatment unit (Abadie et al., 2010).
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F Health Cost Estimation

F.1 PM2.5 Cost Estimate

To find elderly morbidity and mortality health cost estimates as a result of estimated increases
in PM2.5, we perform a benefit transfer exercise using results from Deryugina et al. (2019). For
mortality, the authors estimate that a 1µg/m3 increase in PM2.5 for one day causes 0.69 addi-
tional deaths per million elderly. Rather than using the standard VSL measures—which tend to
overestimate economic costs when the population who die as a result of pollution exposure are
elderly—the authors instead estimate the lost life years. A 1µg/m3 increase in PM2.5 for one day
results in 2.99 lost life-years per million medicare beneficiaries, with life years estimated to be
worth $100,000 (Cutler, 2005).

For morbidity estimates, Deryugina et al. (2019) estimate that a 1µg/m3 increase in PM2.5
exposure for on day leads to 2.7 additional ER visits and increases spending by $16,400 per million
medicare beneficiaries. Imperial County has an estimated population over 65 of 13.4%, which
given an overall population of 180,000 leads to an impacted population of 24,000.

To find infant mortality we use estimates from Chay and Greenstone (2003) who find that
a 1µg/m3 reduction in total suspended particles is associated with 4-7 fewer infant deaths per
100,000 live births. Imperial County has 90 births per 1,000 women per year, and a female popu-
lation estimated at 87,000.

F.2 PM10 Cost Estimate

Jones et al. (2022) use estimates for the effect of PM10 exposure on health to estimate the cost of
cardiovascular mortality and respiratory hospital admissions. While focused on PM10, these es-
timates have the benefit of being more specifically tailored to Imperial County. They start with
baseline estimates of cardiovascular mortality of 134.15 per 100,000 and respiratory-related hos-
pital admissions of 569.1 per 100,000 from the California Department of Public Health and Chris-
tensen et al. (2009). A 1µg/m3 reduction in PM10 is scaled to increase respiratory hospital admis-
sions using results from Schwartz (1996) and cardiovascular mortality using results from Ostro
et al. (2000). Jones et al. (2022) use a log-linear health impact function according to the following
relationship:

Ht = b

(
1− 1

eβ·∆PM10t

)
where H is the health outcome, b is the baseline estimate, and β is the damage coefficient of
increased PM10. We scale the estimates to 180,000 people, the population of Imperial County.
We modify their cost assumptions by assuming the lower bound for VSL is $1.8 million (Agarwal
et al., 2010) and the upper bound is $4.9 million, which is the high estimate for the oldest age
group in Aldy and Viscusi (2007). We continue to use their estimate for the cost of $38,660 from
the US Environmental Protection Agency for the cost of a cardiovascular hospital admission.

F.3 Changes in Air Pollution

We apply the above health cost estimates to the results from our synthetic control and difference-
in-differences models for mean annual PM2.5 and PM10. Appendix table F1 shows the results for
the average treatment effect over the post-treatment period for the synthetic control results found
in appendix table D1 and the difference-in-differences results found in appendix tables D16 and
D15. For this table, we use the average of the high and low VSL estimates. In addition, we use
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the yearly difference between the synthetic control estimate and observed Imperial County air
pollution values to estimate an annual high and low cost as shown in table F2. High and low cost
estimates differ in the VSL estimate used.

Table F1: Health Cost Estimates.

Panel A: PM 2.5
Coefficient Elderly Mortality Elderly Morbidity Infant Mortality

µg/m3 Lost Years Cost Visits Cost Deaths (Avg) Cost Total
Synthetic Control 1.64 35.85 3,584,698 32.37 196,619 0.71 2,654,820 6,436,137.10
DID (model 1) 1.91 41.71 4,171,358 37.67 228,797 0.82 3,089,300 7,489,454.70
DID (model 2) 1.74 37.92 3,791,786 34.24 207,978 0.75 2,808,190 6,807,953.90

Panel B: PM 10
Coefficient Cardiovascular Respiratory Morbidity

µg/m3 Deaths Cost Admissions Cost Total
Synthetic Control 15.11 10.55 35,185,482 24.95 964,656 36,150,138
DID (model 1) -7.46 -5.39 (17,960,568) -12.55 (485,128) (18,445,695)
DID (model 2) 39.80 26.80 89,381,433 64.41 2,490,042 91,871,474

Table F2: Annual Health Cost Estimates.

PM2.5 Estimated Cost PM10 Estimated Cost
Year ∆µg/m3 Low Cost (mil$) High Cost (mil$) ∆µg/m3 Low Cost (mil$) High Cost (mil$)
2003 -0.79 -4.27 -2.62 1.68 2.15 5.82
2004 0.38 1.25 2.04 -1.12 -3.89 -1.44
2005 -0.78 -4.23 -2.59 1.58 2.03 5.49
2006 2.10 6.98 11.39 12.62 15.91 43.06
2007 2.66 8.86 14.47 17.05 21.37 57.81
2008 -2.24 -12.15 -7.44 16.67 20.90 56.55
2009 -2.20 -11.97 -7.33 28.55 35.17 95.15
2010 4.61 15.35 25.06 -4.80 -16.80 -6.21
2011 2.36 7.84 12.79 -3.70 -12.93 -4.78
2012 4.92 16.37 26.73 25.81 31.93 86.38
2013 1.51 5.02 8.19 15.96 20.03 54.20
2014 7.22 24.03 39.24 26.90 33.22 89.88
2015 3.16 10.52 17.19 16.48 20.67 55.92
2016 3.63 12.08 19.73 25.67 31.76 85.93
2017 0.41 1.37 2.23 20.84 25.96 70.24
2018 -3.11 -16.90 -10.35 28.19 34.75 94.02
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